

Microsoft Power BI Quick
Start Guide
Second Edition

Bring your data to life through data modeling,
visualization, digital storytelling, and more

Devin Knight
Mitchell Pearson
Bradley Schacht
Erin Ostrowsky

BIRMINGHAM - MUMBAI

Microsoft Power BI Quick Start Guide
Second Edition

Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing or its dealers and distributors, will be held liable for any damages
caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Producers: Aarthi Kumaraswamy, Caitlin Meadows
Acquisition Editor – Peer Reviews: Divya Mudaliar
Content Development Editor: Alex Patterson
Technical Editor: Karan Sonawane
Project Editor: Mrunal Dave
Copy Editor: Safis Editing
Proofreader: Safis Editing
Indexer: Priyanka Dhadke
Presentation Designer: Pranit Padwal

First published: July 2018

Second Edition: October 2020

Production reference: 1291020

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-80056-157-1

www.packt.com

http://www.packt.com

packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos,
as well as industry leading tools to help you plan your personal development and
advance your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and

Videos from over 4,000 industry professionals
• Learn better with Skill Plans built especially for you
• Get a free eBook or video every month
• Fully searchable for easy access to vital information
• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.Packt.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get
in touch with us at customercare@packtpub.com for more details.

At www.Packt.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt
books and eBooks.

http://packt.com
http://www.Packt.com
http://customercare@packtpub.com
http://www.Packt.com

Contributors

About the authors
Devin Knight is a Microsoft Data Platform MVP and the President at Pragmatic
Works Training. At Pragmatic Works, Devin determines which courses are created,
delivered, and updated for customers, including 15+ Power BI courses. This is the
tenth SQL Server and Business Intelligence book that he has authored. Devin often
speaks at conferences such as PASS Summit, PASS Business Analytics Conference,
SQL Saturdays, and Code Camps. He is also a contributing member to several PASS
Virtual Chapters. Making his home in Jacksonville, FL, Devin is a contributor at the
local Power BI User Group.

I must give thanks to God; without God in my life, I would not be
as blessed as I am daily. Thanks for the amazing team of authors:
Mitchell, Brad, and Erin have put in time after hours away from
their families to bring this great book together. To my wife, Erin, and
three children, Collin, Justin, and Lana, who were all patient during
nights that daddy had to spend writing. Finally, I would like to
thank Oliver Wood, the best Quidditch coach a rising star like myself
could ask for. I know this will be the year we win the Quidditch cup
and become champions.

Mitchell Pearson has worked as a Data Platform Consultant and Trainer for the
last 8 years. Mitchell has authored books on SQL Server, Power BI, and the Power
Platform. His data platform experience includes designing and implementing
enterprise-level Business Intelligence solutions with the Microsoft SQL Server stack
(T-SQL, SSIS, SSAS, and SSRS), the Power Platform, and Microsoft Azure.

Mitchell is very active in the community:

• Running the local Power BI User Group
• Presenting at user groups locally and virtually
• Writing blogs at www.mitchellpearson.com and creating YouTube videos

for MitchellSQL

First of all, thank you to God for unending grace and mercy.
Secondly, thank you to Brian Knight for giving me an incredible
opportunity in the Business Intelligence field. Finally, thank you
to my wife and kids for their unending encouragement and their
sacrifice; without their support, I could not have contributed to
this book.

http://www.mitchellpearson.com

Bradley Schacht is a Senior Cloud Solution Architect (Data Platform) on the
Microsoft State and Local Government team based in Jacksonville, FL. Bradley
has authored three other SQL Server books. As a former consultant and trainer,
he uses his experience on the Microsoft data platform to help customers architect
quality end-to-end solutions for every business problem encountered. Bradley
gives back to the community through speaking at events such as the PASS Summit,
SQL Saturdays, Code Camps, and user groups across the USA, including locally
at the Jacksonville SQL Server User Group (JSSUG). He is a contributor on www.
SQLServerCentral.com and blogs on his personal site, www.BradleySchacht.com.

I give thanks to God, who has blessed me with so many wonderful
things in life and whom I would be lost without. Thanks to my
amazing wife, Nichole, and our baby boy, Oliver. The support,
encouragement, and family time you give me each and every
day means more to me than you will ever know. Thanks to my
co-authors, Devin, Mitchell, and Erin, who all worked hard and
sacrificed to make this book possible. To everyone that has helped
me throughout my career, thank you. Finally, I thank the Atlanta
Braves for winning their first postseason series since 2001 and
proving that dreams do come true. Please don't screw it up. I look
forward to reflecting on this postseason with Oliver when he signs
with the Braves in 2038.

Erin Ostrowsky is a creative and passionate lifelong learner. She began her career
as a business journalist and researcher and found herself drawn to the power of
beautifully visualized data analysis. After living overseas, Erin returned to the USA
looking to marry her communication background with a technical focus and found
a life-changing opportunity to work as a trainer for Pragmatic Works, where she
focused on creating new educational materials and delivering Power BI training
around the USA. Erin focuses on the Power Platform tools and loves working
on teams to build business intelligence solutions that businesses use and enjoy.

Erin is thankful to Jesus Christ for showing her that love is the root
of all beauty on Earth. She thanks her family, friends, and colleagues
for teaching her about life and being part of the adventure.

http://www.SQLServerCentral.com
http://www.SQLServerCentral.com
http://www.BradleySchacht.com

About the reviewer
Gilbert Quevauvilliers has 10+ years of experience in delivering data solutions,
and has a real passion for Power BI; he's been using Power BI since its inception
at the end of 2014. Gilbert has also been using DAX from Excel 2010 when it was
created, and has been named a Microsoft MVP from 2017 through to 2020.

Gilbert has hands-on experience assisting organizations of all sizes in successfully
implementing Power BI and the Microsoft Data Analytics Platform.

Gilbert is fortunate enough to have spoken at various events (Microsoft Business
Applications Summit, SQL Saturday's, Power BI user groups, and more), and is
currently consulting through his own company, FourMoo (the name represents his
four family members). With FourMoo, Gilbert provides Microsoft Power BI solutions
for business challenges by using your data and working with your business users.
Gilbert also has an active blog, which can be found at www.fourmoo.com/blog.

I would like to say a big thanks to my family, for their endless
support and for helping me find the time to review this book.

http://www.fourmoo.com/blog

[i]

Table of Contents
Preface vii
Chapter 1: Getting Started with Importing Data Options 1

Getting started 2
Importing data 4

Excel as a source 4
SQL Server as a source 6
Web as a source 8

DirectQuery 9
Limitations 11

Composite models 12
Live connection 14

Limitations 15
Which should I choose? 15
Summary 16

Chapter 2: Data Transformation Strategies 17
The Power Query Editor 18
Transform basics 19

Use First Row as Headers 20
Remove Columns 21
Change Type 22
Column From Examples 23

Advanced data transformation options 25
Conditional Columns 25
Fill Down 28
Unpivot 29
Merge Query 34

Table of Contents

[ii]

Append Query 38
Leveraging R 39

Installation and configuration 40
The R script transform 42

AI Insights 44
Sentiment Analysis with Text Analytics 45

The M formula language 46
#shared 48

Summary 49
Chapter 3: Building the Data Model 51

Building relationships 52
Editing relationships 56
Creating a new relationship 59

Creating a relationship on the Datekey 61
Disabling automatically created date tables 64

Working with complex relationships 65
Many-to-many relationships 65

Cross-filtering direction 67
Enabling filtering from the many side of a relationship 69

Role-playing tables 71
Importing the date table 73

Usability enhancements 75
Hiding tables and columns 76
Renaming tables and columns 77
Default summarization 79
How to display one column but sort by another 81
Data categorization 83
Creating hierarchies 85

Data model performance 89
Query performance 89

Importing data 89
Data model design methodologies 89
DirectQuery 92
Aggregations 92

Processing performance 93
Query folding 93
Incremental refresh 94
Best practices 94

Summary 95
Chapter 4: Leveraging DAX 97

Building calculated columns 98
String functions – Month Year 100

Table of Contents

[iii]

Format function – Month Year 102
Age calculation 103
SWITCH() – age breakdown 104
Navigation functions – RELATED 105

Calculated measures – the basics 108
Calculated measures – basic aggregations 109

Total Sales 110
Total Cost 111
Profit 111
Profit Margin 112

Assignment of calculated measures 113
Display folders 114

Filter context 116
Calculate 117
The percentage of total calculation 119

Time intelligence 119
YTD Sales 120
YTD Sales (fiscal calendar) 120

Prior Year Sales 121
Role-playing tables with DAX 122
Summary 127

Chapter 5: Visualizing Data 129
Report view basics 131
Creating new visuals 133
Filtering visualizations and data 135

Cross-filtering and cross-highlighting 136
Edit interactions 138
Slicer 140

String/text 140
Numeric 144
Date 146

Visualizing tabular data 148
Table 149
Matrix 153

Visualizing categorical data 155
Bar and column charts 156
Pie and donut charts 157
Treemap 159
Scatter chart 162
Visualizing trend data 164
Line and Area charts 164
Combo charts 166

Table of Contents

[iv]

Ribbon chart 167
Waterfall chart 169
Funnel chart 170

Visualizing KPI data 172
Gauge 172
KPI 174

Visualizing data using cards 176
Card 176
Multi-row card 177

Visualizing geographical data 179
Map 180
Filled map 181
Shape map 183
ArcGIS Map 184
Azure maps 186

Natural language 187
Visuals from analytics 191
Power BI custom visuals 191
Data visualization tips and tricks 192

Changing visuals 192
Formatting visuals 193
The Analytics section 194
The Top N filter 195
Show value as 196

Summary 197
Chapter 6: Digital Storytelling with Power BI 199

Configuring drill through 200
Capturing report views with bookmarks 206
Combining object visibility with bookmarks 211

Bookmarking alternate views of the same data 212
Using buttons to select bookmarks 214

Report pages as tooltips 217
Summary 220

Chapter 7: Using a Cloud Deployment with the Power BI Service 221
Deploying reports to the Power BI service 222

Datasets 226
Workbooks 226

Creating and interacting with dashboards 227
Creating your first dashboard 227
Asking your dashboard a question 229

Table of Contents

[v]

Subscribing to reports and dashboards 232
Sharing your dashboards 233

Workspaces 233
Setting up row-level security 235
Scheduling data refreshes 237
Summary 241

Chapter 8: Data Cleansing in the Cloud with Dataflows 243
Getting started with dataflows 244
Creating a dataflow 245
Using dataflows as a data source in Power BI Desktop 256
Summary 257

Chapter 9: On-Premises Solutions with Power BI Report Server 259
Deploying to Power BI Report Server 260
Securing reports 262
Scheduling data refreshes 263
Summary 264

Other Books You May Enjoy 265
Index 269

[vii]

Preface
As an experienced BI professional, you may have, at one time, considered your
skills irreplaceable. However, while you were tirelessly building the most elegant
data warehouse solutions, Microsoft was busy building a new suite of self-service
business intelligence and analytics tools called Power BI. Quickly, Power BI has
become one of the most popular tools in the market, and users are looking to you
for advice on how they should implement best practices and scale their own usage
of the tool. While your corporate BI solutions will always be the gold standard for
your company's enterprise data strategy, you can no longer ignore your company's
hunger for self-service data wrangling.

In this book, you will learn how to bridge the gap between your existing corporate
BI skillset and what's possible with Power BI. You will understand how to connect
to data sources using both import and direct query options. You will then learn how
to effectively use the Power BI Query Editor to perform transformations and data-
cleansing processes on your data. This will include using R script and advanced M
query transforms. Next, you will learn how to properly design your data model to
navigate table relationships and use Data Analysis Expression formulas to enhance
its usability. Visualizing your data is another key element of this book, as you will
learn proper data visualization styles and enhanced digital storytelling techniques.
Finally, by the end of this book, you will understand how to administer your
company's Power BI environment so that deployment can be made seamless, data
refreshes can run properly, and security can be fully implemented.

Preface

[viii]

Who this book is for
This book is intended for business intelligence professionals who have
experience with traditional enterprise BI tools, and now need a guide
to jumpstart their knowledge of Power BI. Individuals new to business
intelligence will also gain a lot from reading this book, but knowledge of some
industry terminology will be assumed. The concepts covered in this book
can also be helpful for BI managers beginning their companies' self-service
BI implementation. Prior knowledge of Power BI is helpful but certainly not
required for this book.

What this book covers
Chapter 1, Getting Started with Importing Data Options, begins by getting the audience
oriented with the Power BI Desktop. Next, they will learn how to connect to various
common data sources in Power BI. Once a data source is chosen, the options within
will be explored, including the choice between data import, direct query, and live
connection.

Chapter 2, Data Transformation Strategies, explores the capabilities of the Power Query
Editor inside the Power BI Desktop. Using this Power BI Query Editor, the reader
will first learn how to do basic transformations, and they will quickly learn more
advanced data cleansing practices. By the end of this chapter, the audience will
know how to combine queries, use parameters, and read and write basic M queries.

Chapter 3, Building the Data Model, discusses one of the most critical parts of
building a successful Power BI solution—designing an effective data model. In
this chapter, readers will learn that while designing a data model, they are really
setting themselves up for success when it comes to building reports. Specifically,
this chapter will teach the audience how to establish relationships between tables,
how to deal with complex relationship designs, and how to implement usability
enhancements for report consumers.

Chapter 4, Leveraging DAX, teaches that the DAX language within Power BI is critical
to building data models that are valuable to data consumers. While DAX may be
intimidating at first, readers will quickly learn that its roots come from the Excel
formula engine. This can be helpful at first, but as you find the need to develop more
and more complex calculations, readers will learn that having a background in Excel
formulas will only take them so far. This chapter will start with an understanding
of basic DAX concepts but quickly accelerate into more complex ideas, such as Time
Intelligence and Filter Context.

Preface

[ix]

Chapter 5, Visualizing Data, describes how to take a finely tuned data model and build
reports that properly deliver a message that clearly and concisely tells a story about
the data.

Chapter 6, Digital Storytelling with Power BI, covers the capability that Power BI has to
be much more than just a simple drag-and-drop reporting tool. Using the storytelling
features of Drillthrough, Bookmarks, and the Selection pane, you have the ability
to design reports that not only display data but also tell engaging stories that make
your users crave for more.

Chapter 7, Using a Cloud Deployment with the Power BI Service, examines deploying
your solution to the Power BI service to share what you have developed with your
organization. Once deployed, you can build dashboards, share them with others, and
schedule data refreshes. This chapter will cover the essential skills a BI professional
would need to know to top off a Power BI solution they have developed.

Chapter 8, Data Cleansing in the Cloud with Dataflows, focuses on building reusable
data and transform ative logic. Using Power BI dataflows supports large data
volumes to perform scalable operations.

Chapter 9, On-Premises Solutions with Power BI Report Server, explores how many
organizations have decided that they are not yet ready to move to the cloud. Using
the Power BI Report Server cloud, wary organizations get the benefit of Power BI
reports without compromising their feelings about the cloud. This chapter will cover
deploying to the Power BI Report Server cloud, sharing reports with others, and
updating data.

To get the most out of this book
After downloading and installing the Power BI Desktop, you will be able to follow
the majority of the examples in this book. By subscribing to the Power BI Pro license,
you can follow all examples in this book. There are also supplementary files you can
download to follow the book's examples.

Download the example code files
The code bundle for the book is hosted on GitHub at https://github.com/
PacktPublishing/Microsoft-Power-BI-Start-Guide-Second-Edition. We also have
other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

https://github.com/PacktPublishing/Microsoft-Power-BI-Start-Guide-Second-Edition
https://github.com/PacktPublishing/Microsoft-Power-BI-Start-Guide-Second-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[x]

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams
used in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781800561571_ColorImages.pdf

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter
handles. For example; "Start by connecting to the FIPS_CountyName.txt file that is
found in the book files using the Text/CSV connector."

A block of code is set as follows:

Month Year = RIGHT("0" & 'Date (Order)'[Month Number of Year], 2)

Any command-line input or output is written as follows:

package 'mice' successfully unpacked and MD5 sums checked.

Bold: Indicates a new term, an important word, or words that you see on the screen,
for example, in menus or dialog boxes, also appear in the text like this. For example:
To now build a set of report visuals on this example, you can click Close & Apply
under the Home ribbon.

Warnings or important notes appear like this.

Tips and tricks appear like this.

https://static.packt-cdn.com/downloads/9781800561571_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781800561571_ColorImages.pdf

Preface

[xi]

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com, and mention the book's title in the
subject of your message. If you have questions about any aspect of this book, please
email us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book we would be grateful
if you would report this to us. Please visit, http://www.packtpub.com/submit-errata,
selecting your book, clicking on the Errata Submission Form link, and entering the
details.

Piracy: If you come across any illegal copies of our works in any form on the
Internet, we would be grateful if you would provide us with the location address
or website name. Please contact us at copyright@packtpub.com with a link to the
material.

If you are interested in becoming an author: If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book,
please visit http://authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a
review on the site that you purchased it from? Potential readers can then see and use
your unbiased opinion to make purchase decisions, we at Packt can understand what
you think about our products, and our authors can see your feedback on their book.
Thank you!

For more information about Packt, please visit packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com
http://packtpub.com

[1]

1
Getting Started with

Importing Data Options
Power BI may very well be one of the most aptly named tools ever developed
by Microsoft, giving analysts and developers a powerful business intelligence
and analytics playground while still packaging it in a surprisingly lightweight
application. Using Microsoft Power BI, the processes of data discovery, data
modeling, data visualization, and sharing are made elegantly simple using a single
product. These processes are so commonplace when developing Power BI solutions
that this book has adopted sections that follow this pattern. However, from your
perspective, the really exciting thing may be that development problems that
would previously take you weeks to solve in a corporate BI solution can now be
accomplished in only hours.

Power BI is a Software as a Service (SaaS) offering in the Azure cloud and, as such,
the Microsoft product team follows a strategy of cloud first as they develop and add
new features to the product. However, this does not mean that Power BI is only
available in the cloud. Microsoft presents two options for sharing your results with
others. The first, most often-utilized, method is the cloud-hosted Power BI service,
which is available to users for a low monthly subscription fee. The second option
is the on-premises Power BI Report Server, which can be obtained through either
your SQL Server Enterprise licensing with Software Assurance or a subscription
level known as Power BI Premium. Both solutions require a development tool called
Power BI Desktop, which is available for free, and is where you must start to design
your solutions.

Getting Started with Importing Data Options

[2]

Using the Power BI Desktop application enables you to define your data discovery
and data preparation steps, organize your data model, and design engaging
data visualizations based on your reports. In this first chapter, the development
environment will be introduced, and the data discovery process will be explored in
depth. The topics detailed in this chapter include the following:

• Getting started
• Importing data
• Direct query
• Live connection

Let's first start by learning about what you need on your machine to get started.

Getting started
Power BI Desktop is available for free and can be found via a direct download link
at Power BI (https://powerbi.microsoft.com/), or by installing it as an app from
Microsoft Store. There are several benefits of using the Microsoft Store Power BI app,
including automatic updates, no requirement for admin privileges, and making it
easier for planned IT rollout of Power BI.

Once you've downloaded, installed, and launched Power BI Desktop, you will likely
be welcomed by the start up screen, which is designed to help new users find their
way. Close this start up screen so that we can review some of the most commonly
used features of the application:

If you are using the on-premises Power BI Report Server for
your deployment strategy, then you must download a different
Power BI Desktop, which is available by clicking the advanced
download options link at https://powerbi.microsoft.com/en-
us/report-server/. A separate installation is required because
updates are released more often to Power BI in the cloud. This
book will be written primarily under the assumption that you
are using the cloud-hosted Power BI Service as your deployment
strategy.

https://powerbi.microsoft.com/
https://powerbi.microsoft.com/en-us/report-server/
https://powerbi.microsoft.com/en-us/report-server/

Chapter 1

[3]

Figure 1.1: First view of Power BI Desktop

Following the preceding screenshot, let's learn the names and purposes of some of
the most important features in Power BI Desktop:

• Get data: Used for selecting data connectors and configuring data source
details.

• Transform data: Launches the Power Query Editor, which is used to apply
data transformations to incoming data.

• Report view: Report canvas used for designing data visualizations. This is
the default view that's open when Power BI Desktop is launched.

• Data view: Provides a view of the data in your model. This looks similar
to a typical Excel spreadsheet, but it is read-only.

• Model view: Primarily used when your data model has multiple tables
and relationships that need to be defined between them.

Now that you have a little familiarity with the basic controls within Power BI
Desktop, let's learn about the options you have for connecting to your various
data sources.

Getting Started with Importing Data Options

[4]

Importing data
Power BI is best known for the impressive data visualizations and dashboard
capabilities it has. However, before you can begin building reports, you first need
to connect to the necessary data sources. Within Power BI Desktop, a developer
has more than 130 unique data connectors to choose from, ranging from traditional
file types, database engines, big data solutions, cloud sources, data stored on a web
page, and other SaaS providers. This book will not cover all 130 connectors that are
available, but it will highlight some of the most popular.

When establishing a connection to a data source, you may be presented with one of
three different options regarding how your data will be treated: Import, DirectQuery,
or live connection. This section will focus specifically on the Import option.

Choosing to import data, which is the most common option and default behavior,
means that Power BI will physically extract rows of data from the selected source
and store it in an in-memory storage engine within Power BI. Power BI Desktop
uses a special method for storing data, known as xVelocity, which is an in-memory
technology that not only increases the performance of your query results, but can
also highly compress the amount of space taken up by your Power BI solution. In
some cases, the compression that takes place can even lower the required disk space
by up to one-tenth of the original data source size. The xVelocity engine uses a
local unseen instance of SQL Server Analysis Services (SSAS) to provide these in-
memory capabilities.

There are consequences to using the Import option within Power BI that you should
also consider. These consequences will be discussed later in this chapter, but as you
read on, consider the following:

• How does data that has been imported into Power BI get updated?
• What if I need a dashboard to show near real-time analytics?
• How much data can really be imported into an in-memory storage system?

Now that you are familiar with the underlying mechanics of importing data, let's try
it out with a few of the most common data source types, starting with Excel.

Excel as a source
Believe it or not, Excel continues to be the most popular application in the world and,
as such, you should expect that at some point, you will be using it as a data source:

1. To get started, open Power BI Desktop and close the start up screen if it
automatically appears.

Chapter 1

[5]

2. Under the Home ribbon, you will find that Get data button, which you
already learned is used for selecting and configuring data sources. Selecting
the down arrow next to the button will show you the most common data
connectors, but selecting the center of the button will launch the full list of all
available connectors. Regardless of which way you select the button, you will
find Excel at the top of both lists.

3. Navigate to and open the file called AdventureWorksDW.xlsx from this book's
resources. This will launch the Navigator dialog, shown in the following
screenshot, which is used for selecting the objects in the Excel workbook you
wish to take data from:

Figure 1.2: The Navigator dialog is used for selecting spreadsheets or tables

4. In this example, you can see six separate spreadsheets you can choose from.
Clicking once on the spreadsheet name will give you a preview of the data
it stores, while clicking the checkbox next to the name will include it as part
of the data import. For this example, select the checkboxes next to all of the
available objects, then notice the options available at the bottom right.

Getting Started with Importing Data Options

[6]

5. Selecting Load will immediately take the data from the selected spreadsheets
and import them as separate tables into your Power BI data model. Choosing
Transform Data will launch an entirely new window called Power Query
Editor, which allows you to apply business rules or transform to your data
prior to importing it. You will learn much more about Power Query Editor
in Chapter 2, Data Transformation Strategies. Since you will learn more about
this later, simply select Load to end this example.

Another topic you will learn more about in Chapter 7, Using a Cloud Deployment
with the Power BI Service, is the concept of data refreshes. This is important because,
when you import data into Power BI, that data remains static until another refresh
is initiated. This refresh can either be initiated manually or set on a schedule. This
also requires the installation of Data Gateway, the application in charge of securely
pushing data into Power BI Service. Feel free to skip to Chapter 7, Using a Cloud
Deployment with the Power BI Service, if configuring a data refresh is a subject you
need to know about now.

SQL Server as a source
Another common source designed for relational databases is Microsoft SQL Server:

1. To connect to SQL Server, select the Get data button again, but this time
choose SQL Server. The following screenshot shows that you must provide
the server, but the database is optional and can be selected later:

Figure 1.3: Establishing a connection to SQL Server

Chapter 1

[7]

2. On your first use of SQL server, you are asked to choose the type of Data
Connectivity mode you would like. As mentioned previously, Import is the
default mode, but you can optionally select DirectQuery. DirectQuery will
be discussed in greater detail later in this chapter. Expanding the Advanced
options provides a way to insert a SQL statement that may be used as your
source. For the following example, the Server name property is the only
property populated before you click OK:

Figure 1.4: Providing credentials to SQL Server

3. Next, you will be prompted, as shown in the preceding screenshot, to
provide the credentials you are using to connect to the database server you
provided on the previous screen.

4. Click Connect after providing the proper credentials. You may be prompted
with a warning stating that Power BI is only able to access the data source
using an unencrypted connection. Click OK if you encounter this to
launch the same Navigator dialog that you may remember from when you
connected to Excel. Here, you will select the tables, views, or functions
within your SQL Server database that you wish to import into your Power
BI solution. Once again, the final step in this dialog allows you to choose
to either Load or Transform Data.

Now that you have a better understanding of how to connect to some of the most
common data sources, let's look at one that is rather unique.

Getting Started with Importing Data Options

[8]

Web as a source
One pleasant surprise to many Power BI developers is the availability of a web
connector. Using this connection type allows you to source data from files that are
stored on a website, or even data that has been embedded into an HTML table on
a web page. Using this type of connector can often be helpful when you would like
to supplement your internal corporate data sources with information that can be
publicly found on the internet.

For this example, imagine you are working for a major automobile manufacturer
in the United States. You have already designed a Power BI solution using data
internally available within your organization that shows historical patterns in sales
trends. However, you would like to determine whether there are any correlations
in periods of historically higher fuel prices and lower automobile sales. Fortunately,
you found that the United States Department of Labor publicly posts the historical
average consumer prices of many commonly purchased items, including fuel prices:

1. Now that you understand the scenario within Power BI Desktop, select
the Get data button and choose Web as your source. You will then be
prompted to provide the URL where the data can be found. In this example,
the data can be found by searching on the website https://www.data.gov/.
Alternatively, to save you some time, use the direct link: https://download.
bls.gov/pub/time.series/ap/ap.data.2.Gasoline. Once you provide the
URL, click OK, as shown in the following screenshot:

Figure 1.5: Providing the URL where your data can be found

2. Next, you will likely be prompted with an Access Web Content dialog box.
This is important when you are using a data source that requires someone to
log in to access it. Since this data source does not require a login to find the
data, you can simply select anonymous access, which is the default, and then
click Connect, as shown in the following screenshot:

https://www.data.gov/
https://download.bls.gov/pub/time.series/ap/ap.data.2.Gasoline
https://download.bls.gov/pub/time.series/ap/ap.data.2.Gasoline

Chapter 1

[9]

Figure 1.6: A preview of the data is shown before you import it into Power BI

3. Notice on the next screen that Power BI Desktop recognizes the URL you
provided as a tab-delimited file. This can now easily be added to any existing
data model you have designed.

Now that you've learned how to connect to various data sources, it is important to
discuss in more depth the different data storage modes.

DirectQuery
Many of you have likely been trying to envision how you may implement these data
imports in your environment. You may have asked yourself questions such as the
following:

• If data imported into Power BI uses an in-memory technology, did my
company provide me with a machine that has enough memory to handle
this?

Getting Started with Importing Data Options

[10]

• Am I really going to import my source table with tens of billions of rows
into memory?

• How do I handle the requirement of displaying results in real time from
the source?

These are all excellent questions that would have many negative answers if the
only way to connect to your data was by importing your source into Power BI.
Fortunately, there is another way. Using DirectQuery, Power BI allows you to
connect directly to a data source so that no data is imported or copied into Power
BI Desktop.

Why is this a good thing? Consider the questions that were asked at the beginning
of this section. Since no data is imported to Power BI Desktop, this means it is less
important how powerful your personal laptop is. This is because all query results
are now processed on the source server instead of your laptop. It also means that
there is no need to refresh the results in Power BI, since any reports you design
are always pointing to a live version of the data source. That's a huge benefit!

The following screenshot shows a connection to a SQL Server database with the
DirectQuery option selected:

Figure 1.7: SQL Server Data Connectivity mode allows you to switch to DirectQuery mode

Earlier in this chapter, the Data Gateway application was mentioned as a
requirement for scheduling data refreshes for sources that used the Import
option. This same application is also needed with DirectQuery if your data is
an on-premises source. Even though there is no scheduled data refresh, the Data
Gateway application is still required to push on-premises data into the cloud. Again,
this will be discussed in more depth in Chapter 7, Using a Cloud Deployment with the
Power BI Service.

Chapter 1

[11]

Limitations
So, if DirectQuery is so great, why not choose it every time? Well, with every great
feature, you will also find limitations. The first glaring limitation is that not all data
sources support DirectQuery. At the time this book was written, the following data
sources support DirectQuery in Power BI:

• Amazon Redshift
• AtScale Cubes
• Azure HDInsight Spark
• Azure SQL Database
• Azure SQL Data Warehouse
• BI Connector
• Denodo
• Dremio
• Essbase
• Exasol
• Google BigQuery
• HDInsight Interactive Query
• IBM DB2
• IBM Netezza
• Impala
• Indexima
• Intersystems IRIS
• Jethro ODBC
• Kyligence Enterprise
• MarkLogic ODBC
• Oracle
• PostgreSQL
• Power BI datasets
• QubolePresto
• SAP Business Warehouse Message Server
• SAP Business Warehouse Server
• SAP HANA

Getting Started with Importing Data Options

[12]

• Snowflake
• Spark
• SQL Server
• Teradata Database
• Vertica

Depending on the data source you choose, there is a chance of slower query
performance when using DirectQuery compared to the default data import
option. Keep in mind that when the Import option is selected, it leverages a highly
sophisticated in-memory storage engine. When selecting DirectQuery, performance
will depend on the source type you have chosen from the preceding list.

Another limitation worth noting is that not all Power BI features are supported
when you choose DirectQuery. For example, depending on the selected source, some
of the Power Query Editor features are disabled and could result in the following
message: "This step results in a query that is not supported in DirectQuery mode."
The following screenshot shows this response:

Figure 1.8: Certain transforms may force a user out of DirectQuery mode

The reason for this limitation is because DirectQuery automatically attempts to
convert any Power Query steps into a query in the data source's native language.
So, if the source of this solution was SQL Server, then Power BI would attempt to
convert this data transformation into a comparable T-SQL script. Once Power BI
realizes Power Query Editor used a function that is not compatible with the source,
the error is generated.

Composite models
Occasionally, you may find it helpful for your data model to take a hybrid approach
regarding how it stores data. For example, you want sales transactions to be
displayed in near real time on your dashboard, so you set your SalesTransaction
table to use DirectQuery. However, your Product table rarely has values that are
added or changed. Having values that do not change often make it a great candidate
for the imported data storage method to take advantage of the performance benefits.

Chapter 1

[13]

This describes a perfect scenario for utilizing a feature called composite models.
Composite models allow a single Power BI solution to include both DirectQuery
and import table connections within one data model. From the Power BI developer's
perspective, you can take advantage of the best parts of each data storage mode
within your design.

Within Power BI Desktop, it is clear a solution is leveraging composite models if we
view the storage mode in the bottom-right corner of the tool. Clicking this corner,
shown in the following screenshot, will allow you to switch all tables to Import
mode instead. Optionally, if you need to change the storage mode of individual
tables, this can be accomplished in the Model view by selecting individual tables:

Figure 1.9: The bottom-right corner allows you to switch storage modes for the entire model

While composite models give you the best of DirectQuery and import models,
there's a third storage mode that is often used for data sources that are highly
groomed by IT.

Another effective use case for composite models is available due
to a feature called aggregations. Leveraging aggregations is one of
the best ways to manage extremely large datasets in Power BI. You
will learn more about designing aggregations in Chapter 3, Building
the Data Model.

Getting Started with Importing Data Options

[14]

Live connection
The basic concept of live connection is very similar to that of DirectQuery. Just like
DirectQuery, when you use a live connection, no data is actually imported into
Power BI. Instead, your solution points directly to the underlying data source and
leverages Power BI Desktop simply as a data visualization tool. So, if these two
things are so similar, why give them different names? The answer is because even
though the basic concept is the same, DirectQuery and live connection vary greatly.

One difference that should quickly be noticeable is the query performance
experience. It was mentioned in a previous section that DirectQuery can often have
poor performance, depending on the data source type. With live connection, you
generally will not have any performance problem because it is only supported by
the following types of data sources:

• SQL Server Analysis Services database
• Azure Analysis Services database
• Power BI datasets

The reason performance does not suffer with these data sources is because
they either use the same xVelocity engine that Power BI does, or another high-
performance storage engine. To set up your own live connection to one of these
sources, you can choose the SQL Server Analysis Services database from the list
of connectors after selecting Get data. The following screenshot shows that you
can specify that the connection should be set to Connect live:

Figure 1.10: SQL Server Analysis Services Data Connectivity mode allows you to switch to Connect live mode

Chapter 1

[15]

Of course, these benefits don't come without a cost. Let's discuss some of the
limitations of Live connection.

Limitations
So far, this sounds great! You have now learned that you can connect directly to
your data sources, without importing data into your model, and that you won't have
significant performance consequences. Of course, these benefits don't come without
giving something up, so what are the limitations of a live connection?

What you will encounter with live connections are limitations that are generally a
result of the fact that Analysis Services is an Enterprise BI tool. Thus, if you are going
to connect to it, then it has probably already gone through significant data cleansing
and modeling by your IT team.

Modeling capabilities such as defining relationships are not available because these
would be designed in an Analysis Services Model. Also, Power Query Editor is
not available at all against a Live connection source. While, at times, this may be
frustrating, it does make sense that it works this way. This is because any of the
changes you may desire to make with relationships or in the Power Query Editor
should be done in Analysis Services, not Power BI.

Which should I choose?
Now that you have learned about the three different ways to connect to your
data, you are left wondering which option is best for you. It's fair to say that the
choice you make will really depend on the requirements of each individual project
you have.

If a dataset is configured for a Live connection or DirectQuery, then
you can expect automatic refreshes to occur approximately each
hour by default. You can manually adjust the refresh frequency
in the Scheduled cache refresh option in the Power BI service.

Getting Started with Importing Data Options

[16]

To summarize, some of the considerations that were mentioned in this chapter are
listed in the following table:

Consideration Import Data DirectQuery Live connection
Best performance Yes No Yes
Best design
experience Yes No No

Best for keeping
data up to date No Yes Yes

Data source
availability Yes No No

Most scalable No Yes Yes

Some of the items you'll consider may be more important than others. So, to make
this more personal, try using the Data Connectivity - Decision Matrix file that is
included with this book. In this file, you can rank (from 1 to 10) the importance of
each of these considerations to help you choose which option is best for you.

Since the Import Data option presents the most available features, going forward,
this book primarily uses this option. In Chapter 2, Data Transformation Strategies,
you will learn how to implement data transformation strategies to ensure all the
necessary business rules are applied to your data.

Summary
Power BI provides users with a variety of methods for connecting to data sources
with natively built-in data connectors. The connector you choose for your solution
will depend on where your data is located. Once you've connected to a data source,
you can decide on what type of query mode best suits your needs. Some connectors
allow for little to no latency in your results with options like DirectQuery or live
connection. In this chapter, you learned about the benefits and disadvantages of
each query mode, and you were given a method for weighting these options using a
decision matrix.

In the next chapter, you will learn more about how data transformations may be
applied to your data import process so that incoming data will be properly cleansed.

[17]

2
Data Transformation

Strategies
Within any BI project, it is essential that the data you are working with has been
properly scrubbed to ensure accurate results on your reports and dashboards.
Applying data cleansing business rules, also known as transforms, is the primary
method for correcting inaccurate or malformed data, but the process can often be
the most time-consuming part of any corporate BI solution. However, the data
transformation capabilities built into Power BI are both very powerful and user-
friendly. Using the Power Query Editor, tasks that would typically be difficult or
time-consuming in an enterprise BI tool are as simple as right-clicking on a column
and selecting the appropriate transform for the field. While interacting with the user
interface, the Power Query Editor automatically writes queries using a language
called M behind the scenes.

Through the course of this chapter, you will explore some of the most common
features of the Power Query Editor that make it so highly regarded by its users. Since
one sample dataset cannot provide all the problems you will run into, you will be
provided with several small, disparate examples to show you what is possible. This
chapter will detail the following topics:

• The Power Query Editor
• Transform basics
• Advanced data transformation options
• Leveraging R

Data Transformation Strategies

[18]

• AI Insights
• The M formula language

To get started, let's get familiar with the interface known as the Power Query Editor.

The Power Query Editor
The Power Query Editor is the primary tool that you will utilize for applying
transformations and cleansing processes to your data. This editor can be launched
as part of establishing a connection to your data, or by simply clicking Transform
Data on the Home ribbon of the Power BI Desktop. When the Power Query Editor
is opened, you will notice that it has its own separate environment for you to work
in. The environment encapsulates a user-friendly method for working with all of the
queries that you will define. Before you dive deep into the capabilities of the Power
Query Editor, let's first start by reviewing the key areas of the Power Query Editor
interface, as shown in Figure 2.1:

Figure 2.1: First view of the Power Query Editor

Following the numbered figures, let's review some of the most important features of
the Power Query Editor:

1. New Source: This launches the interface to establish your connection details,
which is the same interface as the Get data button that you learned about in
Chapter 1, Getting Started with Importing Data Options.

2. The Queries pane: A list of all the queries that you have connected to. From
here, you can rename a query, disable the load and modify report refresh
capabilities, and organize your queries into groups.

Chapter 2

[19]

3. Query Settings: Within this pane, you can rename the query, but more
importantly, you can see and change the list of steps, or transforms, that have
been applied to your query. If you ever accidentally close this pane, you can
relaunch it from the View menu.

4. Advanced Editor: By launching the Advanced Editor, you can see the M
query that is automatically written for you by the Power Query Editor.

5. Close & Apply: Choosing this option will close the Power Query Editor and
load the results into the data model.

With this basic navigation understood, let's start to discuss some of the basics of
working with various transforms.

Transform basics
Applying data transformations within the Power Query Editor can be a surprisingly
simple thing to do. However, there are a few things to consider as we begin this
process. The first is that there are multiple ways to solve a problem. As you work
your way through this book, the authors have tried to show you the fastest and
easiest methods of solving the problems that are presented, but these solutions will
certainly not be the only ways to reach your goals.

The next thing you should understand is that every click you do inside the Power
Query Editor is automatically converted into a formula language called M. Virtually
all the basic transforms you will need can be accomplished by simply interacting
with the Power Query Editor user interface, but for more complex business problems
there is a good chance you may have to modify the M queries that are written for
you by the editor. You will learn more about M later in this chapter.

Finally, the last important consideration to understand is that all transforms that
are created within the editor are stored in the Query Settings pane under a section
called Applied Steps. Why is this important to know? The Applied Steps section has
many features, but here are some of the most critical to know for now:

• Deleting transforms: If you make a mistake and need to undo a step, you
can click the Delete button next to a step.

• Modifying transforms: This can be done with any step that has a gear icon
next to it.

• Changing the order of transforms: If you realize that it is better for one step
to execute before another one, you can change the order of how the steps are
executed.

Data Transformation Strategies

[20]

• Selecting previous steps: Clicking on any step prior to the current one will allow
you to see how your query results would change one step earlier in the process.

With this understanding, you will now get hands-on with applying several basic
transforms inside the Power Query Editor. The goal of these first sets of examples is
to get you comfortable with the Power Query Editor user interface before the more
complex use cases are covered.

Use First Row as Headers
Organizing column names or headers is often an important first task when managing
your dataset. Providing relevant column names makes many of the downstream
processes, such as building reports, much easier. Often, column headers are
automatically imported from your data source, but sometimes you may be working
with a more unique data source that makes it difficult for Power BI to capture the
column header information. This walkthrough will show how to deal with such a
scenario:

1. Launch Power BI Desktop, and click Get data on the Home ribbon.
2. Choose Excel, then navigate to and select Open on the

Failed Bank List.xlsx file that is available in the book source files.
3. In the Navigator window, select the table called Data, then choose

Transform Data. When the Power Query Editor launches, you should notice
that the column headers are not automatically imported. In fact, the column
headers are in the first row of the data.

4. To push the column names that are in the first row of data to the header
section, select the transform called Use First Row as Headers from the Home
ribbon as shown in Figure 2.2:

Figure 2.2: Leveraging the Use First Row as Headers transform

Once complete, you will see the first row of the dataset has been promoted to the
column header area. This is a very common transform that you can expect to use
often with flat files. Next, let's look at another commonly used transform, Remove
Columns.

Chapter 2

[21]

Remove Columns
Often, the data sources you will connect to will include many columns that are
not necessary for the solution you are designing. It is important to remove these
unnecessary columns from your dataset because these unused columns needlessly
take up space inside your data model. There are several different methods for
removing columns in the Power Query Editor. This example will show one of these
methods using the same dataset from the previous demonstration:

1. Multi-select (Ctrl + click) the column headers of the columns you wish to
keep as part of your solution. In this scenario, select the columns Bank
Name, City, ST, and Closing Date.

2. With these four columns selected, right-click on any of the selected columns
and choose Remove Other Columns, as shown in Figure 2.3:

Figure 2.3: Selecting the Remove Other Columns transform

Once this transform is completed, you should be left with only the columns you
need.

Another popular method for removing columns is clicking the Choose Columns
button on the Home ribbon of the Power Query Editor. This option provides a list of
all the columns, and you can choose the columns you wish to keep or exclude.

Data Transformation Strategies

[22]

With any data cleansing tool, data type manipulation is critical and can help save
you from many headaches later in the development of your solution. In the next
section, you will learn about how to change data types.

Change Type
Defining column data types properly early on in your data scrubbing process can
help to ensure proper business rules can be applied and data is presented properly
in reports. The Power Query Editor has various numeric, text, and date-time data
types for you to choose from. In our current example, all of the data types were
automatically interpreted correctly by the Power Query Editor, but let's look at
where you could change this if necessary:

1. Locate the data type indicator on the column header to the left of the column
name.

2. Click the data type icon, and a menu will open that allows you to choose
whichever data type you desire, as shown in Figure 2.4:

Figure 2.4: Choosing a different data type

You can also select the columns you wish to remove; right-click on
one of the selected columns and click Remove. This seems like the
more obvious method. However, this option is not as user-friendly
in the long run because it does not provide an option to edit the
transform in the Applied Steps section like the first two methods
do.

Chapter 2

[23]

Another method you can use for changing column data types is to right-click on
the column you wish to change, then select Change Type and choose the new data
type. You should always be careful when changing data types to ensure your data
supports the change. For instance, if you change a column data type to a Whole
Number while it has letters stored in it, Power BI will produce an error.

Many of the transforms you will encounter in the future are contextually based on
the column data types you are working with. For example, if you have a column that
is a date, then you will be provided with special transforms that can only be executed
against a date data type, such as extracting the month name from a date column.

Understanding how to properly set data types in Power BI is often the first step to
using more exciting transforms. In the next section, you will learn how Power BI can
read from an example you provide to automatically create transform rules.

Column From Examples
One option that can make complex data transformations seem simple is the feature
called Add Column From Examples. Using Add Column From Examples, you can
provide the Power Query Editor with a sample of what you would like your data
to look like, and it can then automatically determine which transforms are required
to accomplish your goal. Continuing with the same failed banks example, let's walk
through a simple example of how to use this feature:

1. Find and select the Add Column tab in the Power Query Editor ribbon.
2. Select the Column From Examples button and, if prompted, choose From All

Columns. This will launch a new Add Column From Examples interface:

If you want to change multiple column data types at once, you can
multi-select the necessary columns, then select the new data type
from the Data Type property on the Home ribbon.

Data Transformation Strategies

[24]

Figure 2.5: Choosing the Column from Examples transform

3. Our goal is to leverage this feature to combine the City and ST columns
together. In the first empty cell, type Barboursville, WV and then hit Enter.
In Figure 2.5 you will notice that the text you typed has automatically been
translated into an M query and applied for every row in the dataset.

4. Once you click OK, the transform is finalized and automatically added to
the overall M query that has been built through the user interface. The newly
merged column will be added with the rest of your columns and you can
optionally rename the column something more appropriate by double-
clicking on the column header:

Figure 2.6: Adding Column from Examples

Chapter 2

[25]

As you can see, the Add Column from Examples feature is great because you don't
have to be an expert in which transforms are appropriate because Power BI will
automatically choose them for you!

Now that you have learned some basic transforms, let's explore some more complex
design patterns that are still used quite frequently.

Advanced data transformation options
Now that you should be more comfortable working within the Power Query Editor,
let's take the next step and discuss more advanced options. Often, you will find the
need to go beyond these basic transforms when dealing with data that requires more
care. In this section, you will learn about some common advanced transforms that
you may have a need for, which include Conditional Columns, Fill Down, Unpivot,
Merge Queries, and Append Queries.

Conditional Columns
Using the Power Query Editor Conditional Columns functionality is a great way
to add new columns to your query that follow logical if/then/else statements.
This concept of if/then/else is common across many programming languages,
including Excel formulas. Let's review a real-world scenario where you would be
required to do some data cleansing on a file before it could be used. In this example,
you will be provided with a file of all the counties in the United States, and you must
create a new column that extracts the state name from the county column and places
it in its own column:

1. Start by connecting to the FIPS_CountyName.txt file that is found in the book
files using the Text/CSV connector.

2. Launch the Power Query Editor by selecting Transform Data, then start
by changing the data type of Column1 to Text. When you do this, you will
be prompted to replace an existing type conversion. You can accept this by
clicking Replace current.

Sometimes, you may encounter scenarios where the Add Column
From Examples feature needs more than one example to properly
translate your example into an M query function that accomplishes
your goal. If this happens, simply provide additional examples of
how you would like the data to appear in different rows, and the
Power Query Editor should adjust to account for outliers.

Data Transformation Strategies

[26]

3. Now, on Column2, filter out the value UNITED STATES from the column
by clicking the arrow next to the column header and unchecking UNITED
STATES. Then, click OK.

4. Remove the state abbreviation from Column 2 by right-clicking on the column
header and selecting Split Column | By Delimiter. Choose -- Custom -- for
the delimiter type, and type , before then clicking OK, as shown in Figure 2.7:

Figure 2.7: Splitting a column based on a delimiter

5. Next, rename the column names Column1, Column2.1, and Column 2.2, to
County Code, County Name, and State Abbreviation, respectively.

6. To isolate the full state name into its own column, you will need to
implement Conditional Column. Go to the Add Column ribbon and select
Conditional Column.

7. Change the New column name property to State Name and implement
the logic If State Abbreviation equals null Then return County Name
Else return null as shown in Figure 2.8. To return the value from another
column, you must select the icon in the Output property, then choose Select
a column. Once this is complete, click OK:

Chapter 2

[27]

Figure 2.8: Adding a conditional column

This results in a new column called State Name, which has the fully spelled-out state
name only appearing on rows where the State Abbreviation is null:

Figure 2.9: End result of following these steps

This is only setting the stage to fully scrub this dataset. To complete the data
cleansing process for this file, read on to the next section about Fill Down. However,
for the purposes of this example, you have now learned how to leverage the
capabilities of the Conditional Column transform in the Power Query Editor.

Data Transformation Strategies

[28]

Fill Down
Fill Down is a rather unique transform in how it operates. By selecting Fill Down on
a particular column, a value will replace all null values below it until another non-
null appears. When another non-null value is present, that value will then fill down
to all subsequent null values. To examine this transform, you will pick up from
where you left off in the Conditional Column example in the previous section:

1. Right-click on the State Name column header and select Transform |
Capitalize Each Word. This transform should be self-explanatory.

2. Next, select the State Name column and, in the Transform ribbon, select
Fill | Down. This will take the value in the State Name column and replace
all non-null values until there is another State Name value that it can switch
to. After performing this transform, scroll through the results to ensure that
the value of Alabama switches to Alaska when appropriate.

3. To finish this example, filter out any null values that appear in the State
Abbreviation column. The final result should look like Figure 2.10, as
follows:

Figure 2.10: End result of following these steps

In this example, you learned how you can use Fill Down to replace all of the null
values below a non-null value. You can also use Fill Up to do the opposite, which
would replace all the null values above a non-null value. One important thing
to note is that the data must be sorted properly for Fill Down or Fill Up to be
successful. In the next section, you will learn about another advanced transform,
known as Unpivot.

Chapter 2

[29]

Unpivot
The Unpivot transform is an incredibly powerful transform that allows you to
reorganize your dataset into a more structured format best suited for BI. Let's discuss
this by visualizing a practical example to help understand the purpose of Unpivot.
Imagine you are provided with a file that contains the populations of US states over
the last three years, and looks as in Figure 2.11:

Figure 2.11: Example data that will cause problems in Power BI

The problem with data stored like this is you cannot very easily answer simple
questions. For example, how would you answer questions like, What was the total
population for all states in the US in 2018? or What was the average state population in
2016? With the data stored in this format, simple reports are made rather difficult to
design. This is where the Unpivot transform can be a lifesaver. Using Unpivot, you
can change this dataset into something more acceptable for an analytics project, as
shown in Figure 2.12:

Figure 2.12: Results of unpivoted data

Data Transformation Strategies

[30]

Data stored in this format can now easily answer the questions posed earlier by
simply dragging a few columns into your visuals. To accomplish this in other
programming languages would often require fairly complex logic, while the Power
Query Editor does it in just a few clicks.

There are three different methods for selecting the Unpivot transform that you
should be aware of, and they include the following options:

• Unpivot Columns: Turns any selected columns, headers into row values and
the data in those columns into a corresponding row. With this selection, any
new columns that may get added to the data source will automatically be
included in the Unpivot transform.

• Unpivot Other Columns: Turns all column headers that are not selected into
row values and the data in those columns into a corresponding row. With
this selection, any new columns that may get added to the data source will
automatically be included in the Unpivot transform.

• Unpivot Only Selected Columns: Turns any selected columns' headers into
row values and the data in those columns into a corresponding row. With
this selection, any new columns that may get added to the data source will
not be included in the Unpivot transform.

Let's walk through two examples of using the Unpivot transform to show you the
first two of these methods, and provide an understanding of how this complex
problem can be solved with little effort in Power BI. The third method mentioned for
doing Unpivot will not be shown since it's so similar to the first option:

1. Launch a new instance of the Power BI Desktop, and use the Excel connector
to import the workbook called Income Per Person.xlsx found in the book
source files. Once you select this workbook, choose the spreadsheet called
Data in the Navigator window, and then select Transform Data to launch the
Power Query Editor. Figure 2.13 shows what our data looks like before the
Unpivot operation:

Chapter 2

[31]

Figure 2.13: Example before Unpivot is performed

2. Now, make the first row of data into column headers by selecting the
transform called Use First Row as Headers on the Home ribbon.

3. Rename the GDP per capita PPP, with projections column to Country.
4. If you look closely at the column headers, you can tell that most of the

column names are actually years and the values inside those columns
are the income for those years. This is not the ideal way to store this data
because it would be incredibly difficult to answer a question like, What is the
average income per person for Belgium? To make it easier to answer this type
of question, right-click on the Country column and select Unpivot Other
Columns.

5. Rename the columns Attribute and Value to Year and Income, respectively.
6. To finish this first example, you should also rename this query Income. The

results of these first steps can be seen in Figure 2.14:

Figure 2.14: Results of unpivoted data

Data Transformation Strategies

[32]

This first method walked you through what can often be the fastest method for
performing an Unpivot transform, which is by using the Unpivot Other Columns
option. In this next example, you will learn how to use the Unpivot Columns
method as well:

1. Remain in the Power Query Editor, and select New Source from the Home
ribbon. Use the Excel connector to import the Total Population.xlsx
workbook from the book source files. Once you select this workbook, choose
the spreadsheet called Data in the Navigator window, and then select OK.
Figure 2.15 shows the dataset before Unpivot has been added:

Figure 2.15: Example before Unpivot is performed

2. Like the last example, you will again need to make the first row of data into
column headers by selecting the transform called Use First Row as Headers
on the Home ribbon.

3. Then, rename the column Total population to Country.
4. This time, multi-select all the columns except Country, then right-click on

one of the selected columns and choose Unpivot Other Columns as shown in
Figure 2.16. The easiest way to multi-select these columns is to select the first
column then hold Shift before clicking the last column:

Chapter 2

[33]

Figure 2.16: Using the Unpivot Other Columns transform

5. Rename the columns from Attribute and Value to Year and Population,
respectively, to see the result showing in Figure 2.17:

Figure 2.17: Shows the final result of these steps

Data Transformation Strategies

[34]

In this section, you learned about two different methods for performing an Unpivot.
To complete the data cleansing process on these two datasets, it's recommended that
you continue through the next section on merging queries.

Merge Query
Another common requirement when building BI solutions is the need to join two
tables together to form a new outcome that includes some columns from both tables
in the result. Fortunately, Power BI makes this task very simple with the Merge
Queries feature. Using this feature requires that you select two tables and then
determine which column or columns will be the basis of how the two queries are
merged. After determining the appropriate columns for your join, you will select a
join type. The join types are listed here with the description that is provided within
the product:

• Left Outer (all rows from the first table, only matching rows from the
second)

• Right Outer (all rows from the second table, only matching rows from the
first)

• Full Outer (all rows from both tables)
• Inner (only matching rows from both tables)
• Left Anti (rows only in the first table)
• Right Anti (rows only in the second table)

To examine the Merge Queries option, you will pick up from where you left off with
the Unpivot examples in the previous section:

1. With the Population query selected, find and select Merge Queries | Merge
Queries as New on the Home ribbon.

2. In the Merge dialog box, select the Income query from the drop-down
selection in the middle of the screen.

Many of you may already be very familiar with these different
join terms from SQL programming you have learned in the past.
However, if these terms are new to you, I recommend reviewing
Visualizing Merge Join Types in Power BI, courtesy of Jason Thomas
in the Power BI Data Story Gallery: https://community.powerbi.
com/t5/Data-Stories-Gallery/Visualizing-Merge-Join-
Types-in-Power-BI/m-p/219906. This visual aid is a favorite of
many users that are new to these concepts.

https://community.powerbi.com/t5/Data-Stories-Gallery/Visualizing-Merge-Join-Types-in-Power-BI/m-p/2
https://community.powerbi.com/t5/Data-Stories-Gallery/Visualizing-Merge-Join-Types-in-Power-BI/m-p/2
https://community.powerbi.com/t5/Data-Stories-Gallery/Visualizing-Merge-Join-Types-in-Power-BI/m-p/2

Chapter 2

[35]

3. Then, multi-select the Country and Year columns on the Population query,
and do the same under the Income query. This defines which columns will
be used to join the two queries together. Ensure that the number indicators
next to the column headers match, as demonstrated in Figure 2.18. If they
don't, you could accidentally attempt to join on the incorrect columns.

4. Next, select Inner (only matching rows) for Join Kind. This join type will
return rows only when the columns you chose to join on have values that
exist in both queries. Before you click OK, confirm that your screen matches
Figure 2.18:

Figure 2.18: Configuring a merge between two queries

5. Once you select OK, this will create a new query called Merge1 that combines
the results of the two queries. Go ahead and rename this query Country
Stats.

Data Transformation Strategies

[36]

6. You will also notice that there is a column called Income that has a value
of Table for each row. This column is actually representative of the entire
Income query that you joined to. To choose which columns you want from
this query, click the Expand button on the column header. After clicking the
Expand button, uncheck Country, Year, and Use original column name as
prefix, then click OK.

7. Rename the column called Income.1 to Income. Figure 2.19 shows this step
completed:

Figure 2.19: Configuring a merge between two queries

8. Finally, since you chose the option Merge Queries as New in Step 1, you can
disable the load option for the original queries that you started with. To do
this, right-click on the Income query in the Queries pane and click Enable
load to disable it. Do the same thing for the Population query as shown in
Figure 2.20. Disabling these queries means that the only query that will be
loaded into your Power BI data model is the new one, called Country Stats:

Chapter 2

[37]

Figure 2.20: Uncheck to disable the loading of this query into the data model

To begin using this dataset in a report, you would click Close & Apply. You will
learn more about building reports in Chapter 5, Visualizing Data.

By default, merging queries together relies on exact matching values between your
join column(s). However, you may work with data that does not always provide
perfect matching values. For example, a user enters data and misspells their country
as "Unite States" instead of United States. In those cases, you may consider the
more advanced feature called Fuzzy Matching. With Fuzzy Matching, Power BI
can perform an approximate match and still join on these two values based on the
similarity of the values. In this section, you learned how the Merge Queries option
is ideal for joining two queries together. In the next section, you will learn how you
could solve the problem of performing a union of two or more queries.

Data Transformation Strategies

[38]

Append Query
Occasionally, you will work with multiple datasets that need to be appended to each
other. Here's a scenario: you work for a customer service department for a company
that provides credit or loans to customers. You are regularly provided with .csv and
.xlsx files that give summaries of customer complaints regarding credit cards and
student loans. You would like to analyze both of these data extracts at the same
time but, unfortunately, the credit card and student loan complaints are provided
in two separate files. In this example, you will learn how to solve this problem by
performing an append operation on these two different files:

1. Launch a new instance of the Power BI Desktop, and use the Excel connector
to import the workbook called Student Loan Complaints.xlsx found in the
book source files. Once you select this workbook, choose the spreadsheet
called Student Loan Complaints in the Navigator window, and then select
Transform Data to launch the Power Query Editor.

2. Next, import the credit card data by selecting New Source | Text/CSV, then
choose the file called Credit Card Complaints.csv found in the book source
files. Click OK to bring this data into the Power Query Editor.

3. With the Credit Card Complaints query selected, find and select Append
Queries | Append Queries as New on the Home ribbon.

4. Select Student Loan Complaints as the table to append to, then select OK as
shown in Figure 2.21:

Figure 2.21: Configuring an append between two queries

Chapter 2

[39]

5. Rename the newly created query All Complaints and view the results as
seen in Figure 2.22:

Figure 2.22: Configuring an append between two queries

6. Similar to the previous example, you would likely want to disable the load
option for the original queries that you started with. To do this, right-click on
the Student Load Complaints query in the Queries pane and click Enable
load to disable it.

7. Do the same to the Credit Card Complaints query, and then select Close &
Apply.

Now that you have learned about the various methods for combining data, the next
section will discuss a more advanced method of working with data using the R
programming language.

Leveraging R
R is a very powerful scripting language that is primarily used for advanced analytics
tools, but also has several integration points within Power BI. One such integration
is the ability to apply business rules to your data with the R language. Why is that
important? Well, with this capability you can extend beyond the limits of the Power
Query Editor and call functions and libraries from R to do things that would not
normally be possible. In the next two sections, you will explore how to set up your
machine to leverage R within Power BI and then walk through an example of using
an R script transform.

Data Transformation Strategies

[40]

Installation and configuration
To use R within Power BI, you must first install an R distribution for you to run
and execute scripts against. In this book, we will leverage Microsoft's distribution,
Microsoft R Open. It is an open source project and free for anyone to use. Once
Microsoft R Open has been installed, you can then configure Power BI to recognize
the home directory where R libraries may be installed. Let's walk through these setup
steps together:

1. Navigate to the website https://mran.microsoft.com/download/ to
download and install Microsoft R Open.

2. For the purposes of our example, you will select Download next to
Windows.

3. Once the download has completed, run the installation and accept all default
settings and user agreements.

4. Next, launch a new instance of Power BI Desktop to set up the R integration
with Power BI. Click the menu options File | Options and settings |
Options.

5. Choose the R scripting section and ensure that the Detected R home
directories property is filled with the R instance you just installed, as shown
in Figure 2.23:

There are many additional books and references you can read to
learn more about the R scripting language, but for the purposes of
this book, our goal is to inform you of what is possible when R and
Power BI are combined.

https://mran.microsoft.com/download/

Chapter 2

[41]

Figure 2.23: Mapping the R home directories in Power BI

6. Once this is completed, click OK.

With this setup now complete, let's see how we can take advantage of R within
Power BI.

Data Transformation Strategies

[42]

The R script transform
With the R distribution now installed and configured to integrate with Power BI, you
are now ready to see what's possible with these new capabilities. In this example,
you will be looking at data from the European stock market. The problem with this
dataset, which calls for it to be corrected with R, is that the file provided to you
has missing values for certain days. So, to get a more accurate reading of the stock
market, you will use an R package called MICE to impute the missing values:

1. Before beginning in Power BI, you should ensure that the MICE library is
installed and available in the R distribution you set up in the last section. To
do this, launch Microsoft R Open from your device. This is the basic RGui
that was installed for you to run R scripts with.

2. Type the following script in the R Console window, and then hit Enter:
 install.packages("mice")

This input is illustrated in the following screenshot:

Figure 2.24: Running the library install in RGui

For many developers, the preferred method for writing R
scripts is a free open source tool called RStudio. RStudio
includes a code editor, debugging, and visualization tools
that many find easier to work with. You can download
RStudio from https://www.rstudio.com/.

https://www.rstudio.com/

Chapter 2

[43]

3. You can close the R Console window and return to Power BI Desktop after it
returns an output like the following:

package 'mice' successfully unpacked and MD5 sums checked.

4. In Power BI Desktop, start by connecting to the required data source called
EuStockMarkets_NA.csv from the book source files. Once you connect to the
file, click Transform Data to launch the Power Query Editor.

5. You will notice that there are a few days missing values in the SMI (Stock
Market Index) column. We would like to replace values that show NA with
approximate values using an R script. Go to the Transform ribbon, and select
the Run R Script button on the far right.

6. Use the following R script to call the MICE library that you recently installed
to detect what the missing values in this dataset should be:

 # 'dataset' holds the input data for this script
 library(mice)
 tempData <- mice(dataset,m=1,maxit=50,meth='pmm',seed=100)
 completedData <- complete(tempData,1)
 output <- dataset
 output$completedValues <- completedData$"SMI missing values"

7. Click OK. If you are prompted with a warning indicating Information is
required about data privacy click Continue.

8. Next, click on the hyperlink on the table value next to the completedData row
to see the result of the newly implemented transform for detecting missing
values.

This new output has replaced the missing values with new values that were detected
based on the algorithm used within the R script. To now build a set of report visuals
on this example, you can click Close & Apply on the Home ribbon.

This is just one simple way that R can be used with Power BI. You should note that
in addition to using R as a transform, it can also be used as a data source and as a
visual within Power BI.

While this book highlights the programming language R to extend the capabilities
of Power BI, some might prefer Python. Python is another programming language
that allows for extensibility into Power BI to create new data connectors, transforms,
and visuals. So, should you choose R or Python? That depends on which you are
more comfortable with. If you have already spent time learning Python, then stick
with that! In the next section of this chapter, you will learn about Power BI's AI
integration features, which give you the ability to call on components of Azure
Cognitive Services with the Power Query Editor.

Data Transformation Strategies

[44]

AI Insights
As you learned in the previous section, Power BI integrates and takes advantage of
outside tools to enhance the capabilities within itself. That continues to be the case
with the AI Insights features. Leveraging the AI Insights capabilities gives you the
ability to tap into core features and algorithms within Azure Cognitive Services and
expose them within Power BI. So how can this be useful to you?

Imagine you work for a company that runs a vacation rentals website. Customers
can book travel and post reviews of their trips on your website. With thousands
of customers and hundreds of rental homes, it can be difficult to manage all the
reviews that come in to make sure your locations are all meeting the standards
your customers expect. With AI Insights you can run algorithms that can perform
sentiment analysis, key phrase extraction, language detection, and even image
tagging. So, if you have international customers that post reviews, you can use
language detection to understand what language the post was written in. Then you
can use sentiment analysis to capture whether the review was positive or negative.
Finally, using phrase extraction, you can pull out key terms in the reviews to see
if the same locations continue to receive feedback regarding similar problems.
Furthermore, if your feedback system allows photos to be posted in the reviews,
the image tagging capabilities can return a list of characteristics found in the images
posted. This would allow for automated categorization of images using AI.

As you can see, these are very powerful features that take your analytics processing
to the next level. There are limitations, however, that you should be aware of before
exploring these features. As of the time that this book was published, Cognitive
Services integration is only supported for Power BI Premium capacity nodes EM2, A2,
or P1 and above. This means if your company is not currently leveraging Power BI
Premium, then these features are not available to you.

In the next section, you will learn how to leverage an AI Insights Text Analytics
feature called Sentiment Analysis.

Before using the AI Insights features in Power BI, you will need to
change the capacity settings in the Power BI admin portal to enable
the AI workload. After turning on the AI workload setting, you can
also set the maximum amount of memory you would like to give
the workload. The general recommendation is a memory limit of
20%.

Chapter 2

[45]

Sentiment Analysis with Text Analytics
The Text Analytics features within the AI Insights features can be incredible time-
savers. Imagine having to read paragraphs of information and conclude what was
important or whether it was written in a positive or negative light. These are exactly
the type of things that this feature can do for you. In this next example, you are going
to test out one of these features by running a sentiment analysis algorithm on hotel
reviews to see how customers feel about staying at your hotel locations:

1. Launch a new instance of Power BI Desktop, and use the Excel connector
to import the workbook called Hotel Ratings.xlsx found in the book source
files. Once you select this workbook, choose the spreadsheet called Reviews
in the Navigator window, and then select Transform Data to launch the
Power Query Editor.

2. Select Text Analytics on the Home ribbon of the Power Query Editor. If
this is your first time using this feature, you may be prompted to sign into
a Power BI account that has Power BI Premium capacity assigned to it.

3. Next, you will be prompted to choose which Text Analytics algorithm you
would like to use. Select Score sentiment, as shown in Figure 2.25, and ensure
the ReviewText field is the Text that will be analyzed. Then click OK:

Figure 2.25: Using the Text Analytics feature

Data Transformation Strategies

[46]

4. If prompted with a data privacy warning, click Continue and then select
Ignore Privacy Levels check for this file before clicking Save. This type of
warning can occur when you combine two disparate sources or services
together and is to ensure it is OK for these data sources to be combined.

This transform will produce a new numeric column with a value between 0 and 1 for
every row in the dataset. A sentiment score of .50 is considered neutral, while any
score lower is negative and any score higher is generally positive:

Figure 2.26: Results of Score sentiment

Looking at Figure 2.26, it looks like the AI integration, with a few exceptions, did
a good job determining how to rate each review.

Next, in the final section of this chapter, you will be introduced to the M formula
language.

The M formula language
The Power Query Editor is the user interface that is used to design and build data
imports. However, you should also know that every transform you apply within this
editor is actually, quietly and behind the scenes, writing an M query for you. The
letter M here is a reference to the language's data mashup capabilities.

Chapter 2

[47]

For simple solutions, it is unlikely that you will ever need to even look at the M
query that is being written, but there are some more complex cases where it's helpful
to understand how to read and write your own M. For the purposes of this book,
covering just the Power BI essentials, you will learn how to find the M query editor
within your solution and then understand how to read what it is doing for you.

For the purposes of this example, you can open up any previously built example,
however, the screenshot used here is from the very first example in this chapter on
basic transforms:

1. Using any Power BI solution you have designed, launch the Power Query
Editor.

2. On the Home ribbon, select Advanced Editor to see the M query that has
been written by the user interface. Figure 2.27 shows an example of what
your Advanced Editor might show:

Figure 2.27: Understanding the elements of M

This query has been formatted to make it easier to read. Let's review the key
elements that are present here:

1. The let expression: Encapsulates a set of values or named expressions to be
computed.

2. Named expressions or variables: The name given to a set of operations in
a step. These names can be anything, but you should note that if you wish
to have a space in the name of a step then it must be surrounded by #"".
For example, if I wanted something to be called Step 1, then I would have to
name an expression #"Step 1". If a space is not required in the name of your
step then the double quotes are not required.

3. M functions: The operations that are used to manipulate the data source.

Data Transformation Strategies

[48]

4. Prior step reference: The M query language generally executes its functions
as serial operations, meaning each operation is executed one after the other
sequentially. You can see this when you look at a query because each call
to an M function always references the prior-named expression, to pick up
where it left off.

5. The in expression: Oddly, the in expression is actually a reference to what
the query will output. Whichever named expression is referenced in the in
expression will be what is returned back in the Power Query Editor preview.

#shared
As mentioned previously, this book will not dive deep into writing your own M
queries since that would be far beyond the essentials of Power BI. However, there
is a great method for exploring the M functions that are available, and how to use
them. Within the Power Query Editor, you can use the #shared function to return
documentation on every available function in the M library. Let's walk through how
you can leverage this tool:

1. In a new instance of Power BI Desktop, select Get data and then choose
Blank Query. This will launch the Power Query Editor with an empty
formula bar waiting for you to provide your own M.

2. In this formula bar, type = #shared, then hit Enter. Remember that M is
case-sensitive so you must use a lowercase s when typing shared.

3. This will return a list of all the available M functions. By selecting the cell
that has the hyperlink text of a certain function, you can see documentation
on how to use each function. Figure 2.28 shows an example of this:

It is important to realize that M is case-sensitive. That
means if you ever make a change to a query or write one
from scratch, you should be careful because there is a
difference between "a" and "A."

Chapter 2

[49]

Figure 2.28: Example of function documentation

This is a great method for learning what M functions are available, and how each
may be used. If you are stumped on how to solve a problem using M then make this
your first stop to explore what options you have.

Summary
In this chapter, you learned that the Power Query Editor is an extremely powerful
tool for applying business rules to incoming data. Implementing data cleansing
techniques can be as simple as right-clicking on a column, or more complex, such
as when building a conditional column. While the Power Query Editor does have
a vast library of transforms available, you also learned that you can tap into the
capabilities of R to extend what's possible when designing queries. Finally, this
chapter discussed the AI capabilities within the Power Query Editor that allow you
to leverage several algorithms available within Azure Cognitive Services. In the
next chapter, on building the data model, you will learn about proper techniques
for building a well-designed Power BI data model to ensure your solutions can solve
all your reporting needs.

[51]

3
Building the Data Model

In this chapter, you are now going to create a coherent and intelligent data model.
Creating a data model is primarily the process of creating necessary relationships
between the different data sources that are leveraged in your model.

Self-service BI would not be possible without a functional data model. Historically,
BI projects focused on building data models could take months and even years to
develop when working within the rigid structure and constraints of a corporate
business intelligence environment. Unfortunately, studies show that about 50
percent of all enterprise BI projects fail. These projects fail because the costs are often
too high; these projects can cost anywhere from hundreds of thousands of dollars
to millions of dollars due to the costs associated with the infrastructure, licensing,
and labor. Another reason for the low success rate is that the business and end users
often won't see any results for many months and can grow frustrated with the lack
of visibility in key business areas. These longer project timelines are a result of the
time it takes to work through the gathering of requirements, architecting a complex
data model, and cleaning up the original data sources. For the enterprise BI projects
that do make it all the way to completion, they will often not deliver on promised
deliverables and lack the components needed to perform the analytical tasks
requested by the business.

Fortunately, Power BI Desktop removes all of the barriers that have resulted in the
high failure rate of traditional enterprise BI projects. Power BI Desktop provides
you with a much more agile approach to building your data model. Therefore,
project completion is measured in days not months or years, the cost is exponentially
cheaper, and any missing components can easily be added as needed. The topics
detailed in this chapter are as follows:

Building the Data Model

[52]

• Building relationships
• Working with complex relationships
• Usability enhancements
• Data model performance

Power BI Desktop and the self-service agile approach greatly improve the success
of BI projects and this is due to the flexibility of Power BI. Power BI allows you to
easily and quickly create meaningful relationships with the different tables that have
been imported into your data model. In this section, you will learn how to build
relationships in Power BI Desktop.

Building relationships
A relationship in Power BI simply defines how different tables are related to one
another. For example, your customer table may be related to your sales table on
the customer key column. You could argue that the building of relationships is
the most important aspect of Power BI Desktop. It is this process, the building of
relationships, that makes everything else work like magic in Power BI. The automatic
filtering of visuals and reports, the ease with which you can author measures with
Data Analysis Expressions (DAX), and the ability to quickly connect disparate data
sources are all made possible through properly built relationships in the data model.

Sometimes, Power BI Desktop will create the relationships for you automatically. It is
important to verify these auto-detected relationships to ensure accuracy.

There are a few characteristics of relationships that you should be aware of, which
will be discussed in this section:

• Auto-detected relationships
• There may be only one active relationship between two tables
• There may be an unlimited number of inactive relationships between two

tables
• Relationships may only be built on a single column, not multiple columns
• Relationships automatically filter from the one side of the relationship to the

many side

Now, to examine some of the key elements of relationships in Power BI, open up the
pbix file Chapter 3 - Building the Data Model.pbix found in your class files:

Chapter 3

[53]

Figure 3.1: Reviewing relationships

Following the numbering, let's take a closer look at each of the four items highlighted
in the preceding Figure 3.1:

1. Relationship: The line between two tables represents that a relationship
exists.

2. Direction: The arrow indicates in which direction filtering will occur.
3. One side: The 1 indicates the Customer table as the one side of the relationship.

This means the key from the one side of the relationship is always unique in
that table.

4. Many side: The * indicates that the FactInternetSales table is the many side
of the relationship. The key will appear in the sales table for each transaction;
therefore, the key appears many times.

Building the Data Model

[54]

The first thing you should do after importing data is verify that all auto-detected
relationships have been created correctly. From the Home ribbon, select Manage
relationships, as seen in Figure 3.2. When in the report view, Manage relationships
will appear on the Modeling ribbon. When in the data view, Manage relationships
appears on the Table tools ribbon, and when in the Model view, Manage
relationships appears on the Home ribbon:

Figure 3.2: Launch the Manage relationships editor

This will open up the Manage relationships editor. The relationship editor is one
of two places where you will go to create new relationships and edit or delete
existing relationships. In this demo, the relationship editor will be used to verify the
relationships that were automatically created by Power BI Desktop.

Figure 3.3 provides a view of the Manage relationships editor:

Chapter 3

[55]

Figure 3.3: Manage relationships editor

Let's break down the editor using the numbered figure:

1. Current relationships in the data model
2. Create a new relationship
3. Edit existing relationships
4. Delete a relationship

First, you need to verify auto-detected relationships. In Figure 3.3, the top half of
the relationship editor gives you a quick and easy way to see what tables have
relationships between them, what columns the relationships have been created on,
and if the relationship is an active relationship. We will discuss active and inactive
relationships later in this chapter.

Building the Data Model

[56]

Take a look at Figure 3.4; you will see that there are currently three relationships, and
all three relationships are currently active:

Figure 3.4: Verifying relationships

The first row in Figure 3.4 displays the relationship between the FactInternetSales
table and the DimCustomer table. The relationship between these two tables was
created automatically by Power BI on the CustomerKey column from each table. In
this scenario, Power BI has correctly chosen the correct column names. However, if
the relationship was created in error, then you would need to edit that relationship.

Now, let's take a look at how to edit an existing relationship.

Editing relationships
In this example, you will edit the relationship between FactInternetSales and
DimCustomer. To edit an existing relationship, select that relationship and then click
on Edit...:

Chapter 3

[57]

Figure 3.5: Editing a relationship

Building the Data Model

[58]

Once you select Edit... you will receive a new dialog box; this is the Edit relationship
editor. In this view, you will see how to change an existing relationship, how
to change a relationship to active or inactive, and the cardinality of the current
relationship; this is also where you can change the Cross filter direction:

Figure 3.6: Editing a relationship

There are five numbered items we will review from Figure 3.6:

1. This identifies the FactInternetSales table and the column that the
relationship was built on.

2. This identifies the DimCustomer table and the column that the relationship
was built on.

3. This checkbox identifies whether the relationship is active or inactive.

Chapter 3

[59]

4. This is the current cardinality between the two tables. Here we see that there
is a many-to-one relationship between FactInternetSales and DimCustomer.
Power BI does an excellent job of identifying the correct cardinality, but it is
important to always verify that the cardinality is correct.

5. The cross filter direction can be single or both. The one side of a relationship
always filters the many side of the relationship, and this is the default
behavior in Power BI. The cross filter option allows you to change this
behavior. Cross filtering will be discussed later in this chapter.

If you need to change the relationship of an existing relationship, then you would
do that in the relationship editor seen in Figure 3.6. To change the column that a
relationship has been created on, simply select a different column. It is important
to point out that a relationship between two tables may only be created on a single
column. Therefore, if you have a relationship that needs to be defined on multiple
columns, also known as a composite key, then you would need to first combine those
keys into a single column before creating your relationship. You saw how to combine
columns in Chapter 2, Data Transformation Strategies.

Creating a new relationship
In the previous section, you saw how to verify existing relationships, and even how
to edit them. In this section, you are going to learn how to create a new relationship.
There are six tables in the data model thus far, and Power BI automatically created
a relationship for all the tables, except for two. Let's begin by creating a relationship
between the FactInternetSales and DimDate tables.

The FactInternetSales table stores three different dates: OrderDate, ShipDate,
and DueDate. There can be only one active relationship between tables in Power
BI, and all filtering occurs through the active relationship. In other words, which
date do you want to see your total sales, profit, and profit margin calculations on?
If it's OrderDate, then your relationship will be on the OrderDate column from the
FactInternetSales table to the FullDateAlternateKey column in the DimDate table.
To create a new relationship, open Manage relationships from the Home ribbon.

Now, let's create a relationship from the OrderDate column in FactInternetSales
to the FullDateAlternateKey column in DimDate. With the Manage relationships
editor open, click on New... to open the Create relationship editor:

Building the Data Model

[60]

Figure 3.7: Creating a new relationship

Complete the following steps to create a new relationship:

1. Select FactInternetSales from the list of tables in the dropdown.
2. Select OrderDate from the list of columns, and use the scroll bar to scroll all

the way to the right.
3. Select DimDate from the next drop-down list.
4. Select FullDateAlternateKey from the list of columns.
5. Cardinality, Cross filter direction, and whether the relationship is active or

inactive is updated automatically by Power BI; remember to always verify
these items.

6. Click OK to close the editor.

Chapter 3

[61]

Now, let's take a look at creating the relationship on the date key rather than the Date
column.

Creating a relationship on the date key
The astute reader may have noticed that the previous demo used the actual date
columns from each table instead of the date keys. This is because most Power BI
models will not contain a date key. However, if you are retrieving your data from a
relational database or from a data warehouse, then a date key will most likely exist
on both tables, and the relationship can be created on the date key.

In Figure 3.8, you see an example of creating a relationship on the date keys in each
table:

Figure 3.8: Creating a new relationship using the date keys

The date table in the Power BI data model is important for developing time
intelligence calculations. When you define your relationship on the date key, rather
than the date column, it is important to also mark your date table as a date table!
If this step is not performed, the built-in time intelligence functions will not work
properly.

Time intelligence is discussed in further detail in Chapter 4,
Leveraging DAX.

Building the Data Model

[62]

At the time of writing, marking a table as a date table can only be accomplished in
the Report view or Data view. There are two ways to mark the table as a date table.
First, you can right-click on the date table and choose Mark as date table | Mark as
date table:

Figure 3.9: Mark as date table

Secondly, you can select the date table; go to the Table tools ribbon and select Mark
as date table:

Chapter 3

[63]

Figure 3.10: Mark as date table, alternate method

Once Mark as date table is selected, you will then be prompted to select the Date
column from your date table:

Figure 3.11: Select valid date column from date table

Power BI will automatically limit the list of available options to columns that are set
to a date type and have only unique values.

Building the Data Model

[64]

There is one other important thing to note on this configuration screen: the built-
in date tables that were associated with this table are removed. In the background,
Power BI creates a hidden date table for each field that has a date or date/time field.
Depending on the number of date fields in your data model, this can create a lot of
extra objects and will consume more memory in your data model! As a best practice,
we recommend disabling this functionality. We'll cover this process in the next
section.

Disabling automatically created date tables
As mentioned previously, Power BI automatically creates hidden date tables for
each date or date/time field in your data model. The date tables created by Power
BI can be disabled from the Options menu. To open the Options menu, in Power BI
Desktop, go to File | Options and Settings | Options. Once the Options window
has been opened, complete the following steps as seen in Figure 3.12:

Figure 3.12: Disable automatically created hidden date tables

1. Under GLOBAL, choose Data Load.
2. Uncheck Auto date/time for new files.

In this section, you learned how to verify automatically created relationships and
how to create new relationships in Power BI Desktop. In the next section, you will
learn about working with complex relationships.

Chapter 3

[65]

Working with complex relationships
There are many complex scenarios that need to be addressed when building a data
model, and Power BI is no different in this regard. In this section, you will learn how
to handle many-to-many relationships and role-playing tables in Power BI.

Many-to-many relationships
Before we discuss how to build a relationship between two tables that have a many-
to-many relationship, let's discuss specifically what a many-to-many relationship
is. Basically a many-to-many relationship is when multiple rows in one table are
associated with multiple rows in another table. An example of a many-to-many
relationship can be observed in the relationship between products and customers.
A product can be sold to many customers, likewise, a customer can purchase many
products. This relationship between products and customers is a many-to-many
relationship. In a one-to-many relationship, a relationship can be created directly
between the two tables. However, in a many-to-many relationship, an indirect
relationship is often created through a bridge table. This section will focus on how
to set up a many-to-many relationship and how to gain analytical value from such
relationships!

In the previous section, you learned how to create a relationship between two tables
that had a one-to-many relationship. Immediately, once a one-to-many relationship
has been defined in your data model, filtering occurs automatically. This adds a
tremendous amount of value to Power BI. However, the analytical value achieved
through many-to-many relationships does not happen automatically and requires an
extra step. Let's take a look at filtering in general and then how to effectively develop
for many-to-many relationships in Power BI.

Before you can learn how to handle many-to-many relationships in Power BI, you
must first understand the basic behavior of filtering. Filtering will be discussed
in more detail in the next chapter, but now let's take a minor detour to explain
how filtering works in this context. In Figure 3.13, the total SalesAmount of all
transactions is $29,358,677.22. The table visual you see in Figure 3.13 is simply the
sum of the column SalesAmount from the FactInternetSales table:

Figure 3.13: Total unfiltered SalesAmount

Building the Data Model

[66]

To view the total SalesAmount for all transactions broken down by country, all
you would need to do is simply add the SalesTerritoryCountry column from
the DimSalesTerritory table. This behavior in Power BI is awesome, and this is
automatic filtering at work. Take a look at Figure 3.14:

Figure 3.14: SalesAmount filtered by Country

Please note that this only works because a valid relationship exists between
the FactInternetSales and DimSalesTerritory tables. If a relationship had
not been created, or if the relationship created was invalid, then you would
get entirely different results and they would be confusing. Let's take a look at
what would happen if no relationship had previously existed. In Figure 3.15, the
SalesTerritoryCountry has been removed and replaced with the Temperature
Range column from the 5 Regions 2008 table:

Figure 3.15: Replacing Country with Temperature Range

Chapter 3

[67]

Notice how the total sales amount is repeated for each temperature range.
This behavior indicates that the 5 Regions 2008 table is unable to filter the
FactInternetSales table. This inability to filter can happen for a number of different
reasons, and here are a few:

• Because a relationship does not exist between the tables.
• Because an existing relationship is invalid.
• Because an existing relationship does not allow the filtering to pass through

an intermediate table.

If you see the repeated value behavior demonstrated in Figure 3.15, then go back
to the relationship view and verify that all relationships have been created and are
valid.

Cross-filtering direction
Now that you understand the basics of automatic filtering in Power BI, let's take a
look at an example of a many-to-many relationship. In this data model, DimProduct
and DimCustomer have a many-to-many relationship. A product can be sold to many
customers. For example, bread can be sold to Jessica, Kim, and Tyrone. A customer
can purchase many products. Kim could purchase bread, milk, and cheese.

A bridge table can be used to store the relationship between two tables that have a
many-to-many relationship, just like tools you have worked with in the past.

The relationship between DimProduct and DimCustomer is stored in the
FactInternetSales table. The FactInternetSales table is a large, many-to-many
bridge table:

Figure 3.16: Relationship between DimCustomer and FactInternetSales

Building the Data Model

[68]

Figure 3.16 shows the relationship between these two tables; see the following
explanation for the numbered points:

1. The relationship between DimCustomer and FactInternetSales.
2. The relationship between DimProduct and FactInternetSales.
3. The cross filter direction is set to single.

The following report in Figure 3.17, displays the total sales, total transactions, and
customer count for each product:

Figure 3.17: Customer count for each product

Let's take a closer look at Figure 3.17, and note the numbered points:

1. EnglishProductName from the DimProduct table.
2. Total Sales is the SUM of the SalesAmount column from the FactInternetSales

table.
3. Total Transactions is the COUNT of associated rows from the

FactInternetSales table.
4. Customer Count is the COUNT of the CustomerKey column from the

DimCustomer table.

Total Sales and Total Transactions are returning the correct results for each
product. Customer Count is returning the same value for all products (18,484).
This is due to the way that filtering works. The calculations for Total Sales
and Total Transactions are derived from columns or rows that come from the
FactInternetSales table. The Product table has a one-to-many relationship with
Internet Sales, and therefore filtering occurs automatically. This explains why
those two calculations are being filtered properly, but it does not explain why the
count of customers is returning the same repeated value for all products, not entirely
anyway.

Chapter 3

[69]

Let's take another look at the relationship between DimProduct and DimCustomer.
Notice in Figure 3.18 that the relationship between these two tables flows through
the FactInternetSales table. This is because they have a many-to-many relationship.
In this scenario, the table FactInternetSales is acting as a large, many-to-many
bridge table. DimProduct filters FactInternetSales. DimCustomer also filters
FactInternetSales, and FactInternetSales is currently unable to filter the customer
table:

Figure 3.18: Filtering behavior in Power BI

The repeated value for customer count occurs because FactInternetSales is unable
to filter the DimCustomer table. DimProduct filters FactInternetSales, and a list of
transactions are returned for each product. Unfortunately, the filtering does not pass
from FactInternetSales to DimCustomer. This is because FactInternetSales is on
the many side of the relationship with DimCustomer. Therefore, when our calculation
performs a count on the customer key, the table is not filtered and the calculation
sees every customer key in the DimCustomer table (18,484).

Do you remember the cross-filter direction property that was briefly covered earlier
in this chapter? That little property is there to provide many-to-many support. By
simply enabling cross-filtering in both directions, the FactInternetSales table will be
able to filter the customer table and the customer count will work.

Enabling filtering from the many side of a
relationship
To enable cross-filtering, open the relationship editor. Remember, the Manage
relationships option can be found from the Report View, Data View, or Model
View from different ribbons as discussed at the beginning of this chapter. When in
Report View, Manage relationships will appear on the modeling ribbon, when in
Data View, Manage relationships appears on the Table tools ribbon, and when in
Model View, Manage relationships appears on the Home ribbon.

Building the Data Model

[70]

See Figure 3.19 for a refresher on where to find it:

Figure 3.19: Open the relationship editor

Select the relationship between FactInternetSales and DimCustomer, and then click
Edit.

Once the relationship editor has launched, change the Cross filter direction from
Single to Both:

Figure 3.20: Enabling cross filtering

Back in the Report View, you will now see the correct Customer Count for each
product, as shown in Figure 3.21:

Chapter 3

[71]

Figure 3.21: Customer Count for each product

Now that you have learned how to handle many-to-many relationships in Power BI
desktop, let's take a look at how to handle another type of complex relationship. In
this section, you will learn what role-playing tables are and how to handle them in
Power BI Desktop.

Role-playing tables
A role-playing table is a table that can play multiple roles, which helps to reduce
data redundancy. Most often, the date table is a role-playing table. For example, the
FactInternetSales table has three dates to track the processing of an order. There
is the Order Date, Ship Date, and Due Date and, without role-playing tables, you
would need to have three separate date tables instead of just one. The additional
tables take up valuable resources, such as memory, as well as adding an extra layer
of administrative upkeep.

Each of these dates is very important to different people and different departments
within an organization. For example, the finance department may wish to see total
sales and profit by the date that a product was purchased, the order date. However,
your shipping department may wish to see product quantity based on the ship date.
How do you accommodate requests from different departments in a single data
model?

As a best practice, we recommend not enabling cross filtering for
your date table. In order for some Time Intelligence functions to
work properly, the date table must have a contiguous range of
dates and therefore cannot be filtered by other tables.

Building the Data Model

[72]

One of the things I loved about working with SQL Server Analysis Services
multidimensional was the ease with which it handled role-playing tables; perhaps
you also come from a background where you have worked with tools that had built-
in support for role-playing tables. Unfortunately, role-playing tables are not natively
supported in Power BI; this is because all filtering in Power BI occurs through the
active relationship and you can only have one active relationship between two tables.

There are generally two ways you can handle role-playing tables in Power BI:

• Import the table multiple times and create an active relationship for each
table.

• Using DAX and inactive relationships to create calculations that show
calculations by different dates.

The first way, and the method we will show here, is importing the table multiple
times. Yes, this means that it will take up more resources. The data model will have
three date tables, one table to support each date in the FactInternetSales table. Each
date table will have a single active relationship to the FactInternetSales table.

Some of the benefits of importing the table multiple times are as follows:

• It is easier to train and acclimate end users with the data model. For example,
if you want to see sales and profit by the ship date, then you would simply
use the date attributes from the ship date table in your reports.

• Most, if not all, DAX measures will work across all date tables, so there is no
need to create new measures.

• The analytical value of putting different dates in a matrix. For example, sales
ordered and sales shipped by date. For clarification, see Figure 3.22:

Figure 3.22: Sales by ShipDate and OrderDate

In Figure 3.22 you can observe the analytical benefit of having a shipping date table
and an order date table in the same data model. In this example, the total sales are
being displayed in a matrix visual with the year from the order date table on the
rows and the year from the shipping date table on the columns:

Chapter 3

[73]

1. The value of $3,266,374 is the amount of total sales that were sold in the year
2005.

2. The value of $3,105,587 is the amount of total sales that were shipped in the
year 2005.

3. If you take a look at the column 2006 (ShipDate) you will notice that
$6,576,979 of sales shipped in 2006. Upon closer inspection, $160,786
of what shipped in 2006 was actually ordered in 2005 and the remaining
$6,416,193 was ordered in 2006.

Some of the cons of importing the table multiples times are:

• Resources: Additional memory and space will be used.
• Administrative changes: Any modifications made to one table will need to

be repeated for all tables, as these tables are not linked. For example, if you
create a hierarchy in one table, then you would need to create a hierarchy in
all date tables.

The report in Figure 3.23 shows total sales and total transactions by year, but which
year? Is this the year that a product was purchased or the year a product was
shipped? The active relationship is on the order date, so the report is displaying the
results based on when the product was purchased:

Figure 3.23: Total sales and total transactions by year

The previous visualization is correct but it is ambiguous. To remove any uncertainty
from our reports, the data model can be further improved by the renaming of
columns. In this next section, you will learn how to make small changes in your data
model so that the visuals are more specific.

Importing the date table
In this section, we are going to import a date table to support the analysis of data
based on when an order shipped. From the Get data option, select Excel and open
the AdventureWorksDW Excel file; the file can be found in the directory location
Microsoft-Power-BI-Start-Guide-Second-Edition-main\Data Sources.

Building the Data Model

[74]

Next, select DimDate from the list of tables, and then click Load as seen in
Figure 3.24:

Figure 3.24: Importing DimDate into Power BI

Now that the data has been imported, the next step is creating a valid relationship.
Open Manage relationships from either the Home or Modeling ribbon, depending
on which view you are currently in. From the relationship editor, click New to create
a new relationship. For a reminder on how to create a new relationship, refer to
Figure 3.7. Complete the following steps:

1. Select FactInternetSales from the drop-down list.
2. Select the ShipDate column; use the scroll bar to scroll all the way to the

right.
3. Select DimDate (2) from the drop-down list.
4. Select the FullDateAlternateKey column.
5. Click OK to close the Create relationship window.

I took the liberty of changing the table and column names here, for clarity. You will
learn how to rename tables and columns in the following Usability enhancements
section. DimDate has been renamed Date (Order). DimDate (2) has been renamed
Date (Ship).

The data model now has two date tables, each with an active relationship to the
FactInternetSales table. If you wish to see sales by Order Year, then you would
bring in the year column from the Order Date table, and if you wish to see sales by
the Ship Year, then you would bring in the year column from the Ship Date table;
see Figure 3.25:

Chapter 3

[75]

Figure 3.25: Displaying the ship year column

Importing the same table multiple times is generally the preferred method when two
tables have multiple relationships between them. This method is easy to explain to
end users and allows you to reuse most, if not all, of your existing DAX calculations.

The alternative method is to create inactive relationships and then create new
calculations (measures) using the DAX language. This method of leveraging inactive
relationships can become overwhelming from an administrative point of view.
Imagine having to create copies of the existing measures in the data model for each
relationship between two tables. In the current data model, FactInternetSales stores
three dates, and this would possibly mean having to create and maintain three copies
of each measure, one to support each date.

In this section, you learned how to rename a column to provide clarity; this is an
important step. Now let's take a look at other usability enhancements that can
improve your data model.

Usability enhancements
Usability enhancements are those enhancements that can significantly improve the
overall user experience when interacting with the data model. In order to ensure a
successful handoff and adoption of the work you have done, it is important to not
overlook these rather basic improvements.

In this section, we are going to cover the following usability enhancements:

• Hiding tables and columns
• Renaming tables and columns
• Changing the default summarization property
• Displaying one column but sorting by another
• Setting the data category of fields
• Creating hierarchies

Building the Data Model

[76]

Let's begin by considering how to hide tables and columns.

Hiding tables and columns
Some tables are available in the data model simply in a support capacity and would
never be used in a report. For example, you may have a table to support many-to-
many relationships, weighted allocation, or even dynamic security. Likewise, some
columns are necessary for creating relationships in the data model but would not
add any analytical value to the reports. Tables or columns that will not be used for
reporting purposes should be hidden from Report View to reduce complexity and
improve the user experience.

To hide a column or table, simply right-click on the object you wish to hide, and then
select Hide in report view. If you are in the report view already, the available option
will simply say Hide.

Navigate to Model View, find the FactInternetSales table, and right-click on
CurrencyKey, then select Hide in report view as seen in Figure 3.26:

Figure 3.26: Select Hide in report view

Columns that are hidden are still visible in the data and relationship views. Hidden
columns can be identified in two ways. First, they have slightly lighter text than
columns that are not hidden, and secondly, they have a visibility icon that appears to
the left of the column name, as seen in Figure 3.27:

Chapter 3

[77]

Figure 3.27: Hidden columns

Next, go to each table and hide all remaining key columns, except for
FullDateAlternateKey.

Renaming tables and columns
The renaming of tables and columns is an important step in making your data
model easy to use. Different departments often have different terms for the same
entity, therefore it is important to consider multiple departments when renaming
objects. For example, you may have a column with a list of customer names and you
decide to name this column Customer. However, the sales team may have named
that column Prospect or Client, or any number of other terms. Remember to keep
your end users and consumers of your reports in mind when renaming tables and
columns.

You may rename tables or columns in the Report, Data, or Model View. Navigate to
the Model View and right-click on FactInternetSales, then select Rename, as seen in
Figure 3.28. Rename the table Internet Sales:

When working in the Model View, you can multi-select columns
by holding down the Ctrl key while selecting columns. Therefore,
you can select all columns that need to be hidden first, then hide
them all in a single action.

Building the Data Model

[78]

Figure 3.28: Renaming FactInternetSales

Next, rename the remaining tables, removing the Dim prefix and adding spaces
where applicable. The table below is provided for reference:

FactInternetSales Internet Sales
DimDate Date (Order)
DimDate (2) Date (Ship)
DimProduct Product
DimCustomer Customer
DimSalesTerritory Sales Territory
5 Regions 2008 Temperature

The next step is necessary, but could be a somewhat tedious process. If you come
from a programming or development background, then you will be used to
eliminating spaces in table and column names. End users and consumers of reports
will expect to see spaces and, for that reason, it is recommended to add spaces where
applicable. Spaces need to be added to any column that is visible, not hidden, in the
Report View. To rename a column, right-click on it and then select Rename. In Figure
3.29, spaces have been added to CarrierTrackingNumber and CustomerPONumber:

Chapter 3

[79]

Figure 3.29: Renaming columns

Complete the following steps to rename the rest of your columns:

1. Repeat this process of adding spaces for the remaining columns in each table.
2. Rename FullDateAlternateKey to simply Date.

Renaming columns is a simple, yet effective step for improving user experience!
Now, let's take a look at another important usability enhancement for your data
model, changing the default summarization on numeric columns.

Default summarization
By default, Power BI assigns a default summarization to numeric columns that do
not have a relationship or appear on the one side of a relationship. This default
summarization is usually a sum operation. Columns that have been assigned a
default summarization are denoted by Power BI with a Sigma symbol (∑), as seen
in the Report View. This default summarization behavior can be observed in the
Temperature table. In Figure 3.30, the columns Avg Temp and Month Number have
been assigned a default summarization by Power BI:

Figure 3.30: Default aggregations assigned to columns

Building the Data Model

[80]

This automatic assignment of default summarizations has pros and cons. The benefit
is that fields like Sales Amount or Total Cost will be automatically aggregated when
they are added to a report, thus making the report building process a little easier.
The downside is that very commonly a data model will contain numeric columns
that are descriptive in nature and it could cause confusion for report developers in
Power BI when these columns are automatically aggregated when added to a report.
The columns identified in Figure 3.30 are descriptive attributes that help to explain
the data; these columns should not be aggregated. Take a look at the following
screenshot:

Figure 3.31: Sum of months from the Temperature table

In Figure 3.31, the Month Number column from the date table has been added into a
table visual, and the expected behavior is to see a distinct list of the month numbers
(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12). Instead of returning a distinct list, the report returns
a sum of all records from the Month Number column in the Temperature table resulting
in a final value of 780. Fortunately, the default aggregation can be changed. See
Figure 3.32 and the accompanying steps:

Figure 3.32: Adjust the default summarization

Let's take a look at the numbered items in Figure 3.32 to learn how to change the
default summarization:

1. Select the Report View from the left navigation bar.

Chapter 3

[81]

2. Expand the date table and select the Month Number column. Make sure to
click on the column name here, not the checkbox. Once the column has been
selected, the Column tools ribbon will appear across the top of Power BI
Desktop.

3. Select the Column tools ribbon.
4. Click the dropdown for Summarization, and select Don't summarize.

Repeat the above process for each column in your data model that has been assigned
a default aggregation but should not be summarized.

Now that you have learned how to update the default summarization, let's take a
look at yet another important usability enhancement. In this section, you will learn
how to configure columns in your data model so that the data is properly sorted in
visualizations.

How to display one column but sort by
another
Oftentimes, you want to display the name of one column but sort by another. For
example, the month name is sorted alphabetically when added to a report visual; see
Figure 3.33:

Columns that are in tables on the one side of a relationship will
automatically have a default summarization of Don't summarize!
Take a look at the date table and you will notice that each of the
numeric columns, like Calendar Year and Month Number, have
a default summarization of Don't summarize. This is yet another
benefit of properly defining relationships in Power BI.

Building the Data Model

[82]

Figure 3.33: Month names sorted alphabetically when added to a report visual

The desired behavior is for the month to be sorted chronologically instead. Therefore,
the report should display the month name but sort by the month number of the year.
Take a look at the numbered items in Figure 3.34 and the accompanying steps:

Figure 3.34: Changing the sort order of a column

Chapter 3

[83]

In order to change the sort order of a column, complete the following steps:

1. Select the Report View from the left navigation bar.
2. Expand the Date table and select English Month Name, as seen in Figure

3.34.
3. Select the Column tools ribbon.
4. Click the dropdown for Sort by column and select Month Number Of Year.

Now, let's take a look at how to categorize columns to further improve the report
consumer experience.

Data categorization
Power BI makes some assumptions about your columns based on data types,
column names, and relationships in the data model. These assumptions are used in
the Report View when building visualizations to improve your default experience
with the tool. Once you start building visualizations, you will notice that Power
BI selects different types of visuals for different columns; this is by design. Power
BI also decides column placement within the fields section of a visual, and you
will learn more about the creation of visuals in Chapter 5, Visualizing Data. As you
saw previously in this chapter, when Power BI detects a column that has numeric
values on the many side of a relationship, a default aggregation is assigned. Power
BI assumes you will want to aggregate that data, and will automatically place these
numeric columns into the Values area of a report visual.

The classification of data allows you to improve the user experience as well
as improving accuracy. There are thirteen different options available for data
categorization at the time of writing.

Building the Data Model

[84]

Figure 3.35 provides a full list of the data categories available in Power BI:

Figure 3.35: Options for data categorization

The most common use for data categorization is the classification of geographical
data. When geographical data is added to a map, Bing maps may have to make
some assumptions about how to map that data. This can sometimes cause inaccurate
results. However, through data classification, you can reduce and possibly eliminate
inaccurate results.

One method I have found extremely useful is combining multiple
address columns (City, State) into a single column, and assigning
the new column a data categorization of "Place". I have used this
method with great success. See the following blog post for more
tips on mapping geographical data: https://tinyurl.com/
pbiqs-categoryplace.

https://tinyurl.com/pbiqs-categoryplace
https://tinyurl.com/pbiqs-categoryplace

Chapter 3

[85]

Figure 3.36: Modifying the data category

Follow the numbered steps to update a column's data category; see Figure 3.36:

1. Select the Report View from the left navigation bar.
2. Expand the Sales Territory table and select Sales Territory Country.
3. Select the Column tools ribbon.
4. Click the dropdown for Data category and select Country.

Explicitly classifying each of the geographical columns in your data model will help
Bing Maps to properly map your data correctly. When geographical classifications
are not used it is much more likely that data could be incorrectly mapped. The blog
previously mentioned in this chapter shows data that was incorrectly mapped by
Bing maps and how proper classification of data solved the mapping issue.

Creating hierarchies
Predefining hierarchies can provide several key benefits. Some of those benefits are
listed here:

1. Hierarchies organize attributes and show relationships in the data.
2. Hierarchies allow easy drag and drop interactivity.
3. Hierarchies add significant analytical value to the visualization layer through

drilling down and rolling up data, as necessary.

Building the Data Model

[86]

Hierarchies store information about relationships in the data that users may
not have otherwise known. I remember when I was working for a client in the
telecommunication industry and they had Base Transceiver Stations (BTSes) and
sectors, and without looking at my notes, I could never remember the correct order.
Did a BTS contain multiple sectors, or did a sector contain multiple BTSes? Once the
hierarchy was added to the data model, I no longer had to worry about remembering
the relationship because the relationship was stored in the hierarchy. Here is a list of
common hierarchies:

1. Category | Subcategory | Product
2. Country | State | City
3. Year | Quarter | Month | Day

In order to create a new hierarchy, complete the numbered steps in Figure 3.37:

1. Expand the Sales Territory table.
2. Right-click on the Sales Territory Country column.
3. Select New hierarchy or Create hierarchy, depending on which view you're

in:

Figure 3.37: Create a new hierarchy

A new hierarchy has been created with a single column, and given a default name
of Sales Territory Country Hierarchy. Right-click on the hierarchy created and
rename it Sales Territory Drilldown. The next step is to add additional columns/
attributes to the hierarchy. Complete the following steps as seen in Figure 3.38:

1. Within the Sales Territory table, right-click on Sales Territory Region.
2. Click on Add to hierarchy.

Chapter 3

[87]

3. Select Sales Territory Drilldown.
4. Repeat steps 1-3 for Sales Territory Group:

Figure 3.38: Adding columns/attributes to the hierarchy

The completed hierarchy can be seen in Figure 3.39. However, the order of the
attributes is incorrect; the order should be Sales Territory Group | Sales Territory
Country | Sales Territory Region:

Figure 3.39: Completed hierarchy

To correct the order of the attributes:

1. Right-click on Sales Territory Group; see Figure 3.40.
2. Click Move up.
3. Repeat steps 1 and 2:

Building the Data Model

[88]

Figure 3.40: Reordering a hierarchy

In Figure 3.41 you can see the correctly arranged hierarchy:

Figure 3.41: Completed Sales Territory hierarchy

In this section, you learned how many small but effective modifications can be
leveraged to improve the readability and effectiveness of the data model. These
necessary usability enhancements help to improve the user experience by making the
model intelligent and easier to understand.

Now let's transition to discussing some considerations for data model performance.

Chapter 3

[89]

Data model performance
Data model performance can be measured in two ways within Power BI, query
performance and processing performance. Query performance is how quickly results
are returned by visualizations and reports. Processing performance is a measure of
how long it takes to perform a data refresh on the underlying dataset. Data model
performance as a whole is very important and the Power BI developer should always
be aware of how design decisions may affect performance today or in the future.
A deep dive into performance is out of the scope of this book, but an overview is
provided here.

Query performance
As you learned in Chapter 1, Getting Started with Importing Data Options, there are
multiple ways that you can connect to data in Power BI. For example, you can import
data, use DirectQuery, use live connection, or you can use a combination of import
and direct queries with the composite model.

Importing data
Importing data is the most common method of connecting to data for Power BI
models, storing the data in memory. This method is highly efficient for query
performance due to the fact that all queries are answered from an in-memory cache,
which provides unmatched analytical performance! Models that contain imported
data historically require very little to no performance tuning, especially for smaller
data models.

Data model design methodologies
Data models in Power BI are specifically designed for the purpose of extracting
analytical value out of data to make informed business decisions. Therefore, the data
should be modeled in such a way to effectively and efficiently report data. In Power
BI, there are three types of data models that commonly appear and those are flat
models, star schemas, and snowflake schemas.

Building the Data Model

[90]

A flat or completely denormalized model is where the entire data model is a single
table with no supporting tables. Therefore, all your measurable items and all the
descriptive attributes are in the same table. This model is very common and is a
result of a lot of Excel users importing data directly into Power BI from their Excel
worksheets. This method is highly inefficient and has several drawbacks:

• A flat model does not scale well; as the number of records in the table
increases, the data model will consume significantly more resources due to
the repetitiveness of data and the number of columns.

• A flat model is not flexible and does not hold up well to future changes.
• A flat model is not intelligent, simply meaning it's not easily understandable.
• Time series analysis calculations like Year to Date and Year over Year are

much more difficult to author.

The next type of model is a star schema and this is the preferred way to model
data in Power BI. The term star schema is derived from dimensional modeling.
Dimensional modeling is the way enterprises and organizations have been designing
their analytical data warehouses for over 30 years. A star schema has two types of
tables, fact tables and dimension tables. The reason these data models are called star
schemas is that the dimension tables surround the fact table and appear to represent
a star. See Figure 3.42:

Chapter 3

[91]

Figure 3.42: Star schema

Fact tables store metrics, the measurable items in your data model like sales, tax
amount, duration of a phone call, and so on… A dimension table stores descriptive
attributes that help you to explain your metrics. In a dimension table, related
attributes are stored in their own separate and distinct table. For example, product
name, color, size, weight, and other product-related columns would be stored in a
product table.

Building the Data Model

[92]

Taking the time to build a star schema in Power BI Desktop has several advantages;
please note that the following list is not a comprehensive list of all the advantages of
a star schema:

• The data model is scalable, meaning it will be flexible to grow as more data is
added.

• The data model is flexible and additional tables can more easily be integrated
into the existing data model to support analytical requirements as they arise.

• Star schemas are intelligent and easily understandable.
• Star schemas make time intelligence calculations easy to implement.

The final type of data model I'd like to mention here is a snowflake schema; a
visual depiction of this model more closely resembles a snowflake than a star. In
dimensional modeling, most data models begin as star schemas but may evolve over
time into snowflake schemas to support more advanced analytical requirements.
A simple example of a snowflake schema would be if the product dimension were
broken out into multiple tables like product category, product subcategory, and
product.

DirectQuery
As discussed in Chapter 1, Getting Started with Importing Data Options, another method
for connecting to data is DirectQuery. DirectQuery, unfortunately, has historically
performed very poorly when it comes to query performance. DirectQuery is most
commonly used when the dataset that needs to be analyzed is too large to import
into Power BI.

Aggregations
Creating aggregations in Power BI provides a powerful mechanism for improving
query performance. Aggregations can be used with imported or DirectQuery
models, for massive performance gains!

Effectively implementing aggregations requires an understanding of the data and
understanding how end users will generally query the data. With this knowledge,
an aggregated table can be designed and used to answer a large number of user
requests, rather than the original table storing many more rows of data.

Chapter 3

[93]

Let's look at a hypothetical example: imagine a transaction table that has 100 million
rows of data for the last year. If most visualizations will be performing counts and
sums by date, then an aggregation can be built that returns total sales and total
transactions grouped by date. In this scenario, the aggregate table would return 365
rows of data, 1 row for each day in the last year instead of the original
100-million-row transaction table. In most data models, it is unlikely that the date
alone would suffice to answer most queries from end user requests. Therefore,
additional attributes may need to be added to the aggregate table, for example,
maybe adding the geography key is the missing ingredient. The aggregate table
would now be total sales and total transactions grouped by date and geography.
This would of course increase the size of the table significantly, depending on how
many unique records exist in your geography table, but it would still be significantly
smaller than your original transactional table and likely small enough to import the
aggregated data into Power BI.

Now let's take a look at data modeling considerations for improving processing
performance.

Processing performance
Imported datasets must go through a data refresh operation to load the most recent
data into the data model. In today's "data-driven culture," organizations want more
data and they want it faster than ever before. If a dataset takes hours to refresh, then
you would be limited in how often you can refresh the dataset. On the other hand, if
a dataset only takes minutes to refresh, you can refresh it more often throughout the
day, providing richer insights and more time-sensitive access to the underlying data.

Query folding
As you learned previously in this book, query folding is the process of pushing
work back to the underlying data source. Query folding is very important when the
underlying data source is a relational database like Microsoft SQL Server and query
folding can significantly improve the processing performance of a data model.

The steps for effective implementation of aggregations would
not fit within the scope of this book, however, to learn more
on aggregations take a look at the following blog by Shabnam
Watson: https://shabnamwatson.wordpress.com/2019/11/21/
aggregations-in-power-bi/.

https://shabnamwatson.wordpress.com/2019/11/21/aggregations-in-power-bi/
https://shabnamwatson.wordpress.com/2019/11/21/aggregations-in-power-bi/

Building the Data Model

[94]

Incremental refresh
Historically, refreshing a data model in Power BI requires that all data be refreshed.
Therefore, if a data model contains five years of data, then all five years of data
and the associated rows would be refreshed each time a refresh occurs. As you can
imagine, this can require a lot of overhead. What if a data refresh operation could
take less than a minute, instead of hours?

I have seen the process of incremental refresh reduce data refresh operations from
hours to only minutes. This is because incremental refresh does not reprocess all the
data in the model. Instead, only the most recent data is loaded, while not touching
the historical data. This would include new records or records that have been
updated.

Best practices
There are a few recommended best practices that can help speed up data refresh
operations. This is by no means a comprehensive list, but this list provides you with
a starting point for building data models:

• Only import necessary columns for reporting; remove all other columns from
your model.

• Likewise, only import necessary rows of data; filter out data that is not
needed.

• Try to avoid highly unique columns; they have low compression and take up
valuable resources.

• Disable Auto date/time for new files; see Figure 3.11.
• Create new columns in the Power Query Editor, rather than in DAX, when

possible.

Further reading: Implementation of incremental refresh is outside
the scope of this book, however, you can learn more on incremental
refresh by taking a look at the following blog: https://docs.
microsoft.com/en-us/power-bi/admin/service-premium-
incremental-refresh.

https://docs.microsoft.com/en-us/power-bi/admin/service-premium-incremental-refresh
https://docs.microsoft.com/en-us/power-bi/admin/service-premium-incremental-refresh
https://docs.microsoft.com/en-us/power-bi/admin/service-premium-incremental-refresh

Chapter 3

[95]

Summary
In this chapter, you learned that data models in Power BI Desktop should be
understandable and designed for scalability and flexibility. You learned how to
create new relationships and edit existing relationships. You also learned about how
to handle and model complex relationships like many-to-many and role-playing
tables. This chapter discussed the importance of usability enhancements like sorting
columns, adjusting default summarization, data categorization, and hiding and
renaming columns and tables. Finally, the chapter ended with a short discussion on
performance considerations for querying and processing your data model. You are
now prepared and ready to start building data models in Power BI Desktop!

These data relationships, combined with simple, yet critical usability enhancements,
allow you to build a data model that is both coherent and intelligent. Historically,
business intelligence projects have cost significant resources in terms of time and
money. With Power BI Desktop and through a self-service approach to BI, you now
have the tools necessary to build your own BI project within hours and immediately
extract value from that model to make informed business decisions.

In the next chapter, you will learn about how to leverage data analysis expressions to
further extend the analytical capabilities of your data model.

[97]

4
Leveraging DAX

Data Analysis Expressions (DAX) is a formula language that made its debut back in
2010 with the release of Power Pivot within Excel. Much of DAX is similar to Excel's
functions, and therefore learning DAX is an easy transition for Excel users and Power
users alike. In fact, DAX is so similar to Excel that I have seen new students become
comfortable with the language and begin writing DAX within minutes.

The goal of this chapter is to introduce you to DAX and give you the confidence to
start exploring this language on your own. Because of the brevity of this chapter,
there will not be any discussions on in-depth DAX concepts and theory. There are,
of course, many other books that are dedicated to just that.

Now, let's take a look at what is covered in this chapter:

• Building calculated columns
• Calculated measures – the basics
• Calculated measures – filter context
• Calculated measures – time intelligence
• Calculated measures – role-playing tables with DAX

Now, let's take a look at writing DAX by building calculated columns.

Leveraging DAX

[98]

Building calculated columns
In this section, you will learn how to create calculated columns in Power BI using
DAX. The building of calculated columns is a great way of extending the analytical
capability of Power BI and by the end of this chapter, you will feel very comfortable
with creating new columns through DAX. The writing of calculated columns
logically occurs after the data model has been developed, therefore, in order to
follow along with this section, you will need to open the pbix file Chapter 4 –
Leveraging DAX.pbix from the Microsoft-Power-BI-Start-Guide-Second-Edition-
main\Starting Examples directory.

Calculated columns are stored in the table in which they are assigned, and the values
are static until the data is refreshed. You will learn more about refreshing data in a
later chapter.

There are many use cases for calculated columns, but the two most common are as
follows:

• Descriptive attributes
• Concatenated key columns

Now you are going to create your first calculated column. Before you get started,
though, you need to first know that Power BI Desktop has IntelliSense. IntelliSense
will help you out a lot when writing code, as you will discover very soon. This
built-in functionality will autocomplete your code as you go and will also help you
explore and discover new functions in the DAX language. In order to take advantage
of IntelliSense, you simply need to start typing in the formula bar. Now you are
ready to start writing DAX!

Click on Data View—this is located on the left navigation pane of the Power BI
Desktop screen. Next, click on the Customer table from the Fields list. Once the
Customer table has been selected, click New column—this is found on the Table
tools ribbon, as shown in Figure 4.1:

Figure 4.1: New calculated column

Chapter 4

[99]

You will now see the text Column = in the formula bar. First, name the new column
by replacing the default text of Column with Full Name. Then, move your cursor to
after the equals sign and type a single quote character. Immediately after typing
the single quote character, a list of autocomplete options will appear preceding the
formula bar. This is IntelliSense at work. The first option in this list is the name of
the table you currently have selected—Customer. Press the Tab key and the name
of the table will automatically be added to the formula bar, as shown in Figure 4.2:

Figure 4.2: Using IntelliSense

Next, type an opening square bracket into the formula bar followed by the
capital letter F, making [F. Once again, you will immediately be presented with
autocomplete options. The list of options has been limited to only columns that
contain the letter 𝑓𝑓 , and the first option available from the dropdown is First
Name. Press the Tab key to autocomplete. The formula bar should now contain the
following formula:

Full Name = 'Customer'[First Name]

The next step is to add a space, followed by the last name. There are two options
in DAX for combining string values. The first option is the concatenate function.
Unfortunately, concatenate only accepts two parameters; therefore, if you have more
than two parameters, your code will require multiple concatenate function calls. On
the other hand, you also have the option of using the ampersand sign (&) to combine
strings.

At some point, you will inevitably discover that you can reference
just the column name. As a best practice, we recommend always
referencing both the table and column name anytime you use a
column in your DAX code.

Leveraging DAX

[100]

The ampersand will first take both input parameters and convert them into strings.
After this data conversion step, the two strings are then combined into one. Let's
continue with the rest of the expression. Remember to use the built-in autocomplete
functionality to help you write code.

Next, add a space and the last name column. To add a space—or any string literal
value for that matter—into a DAX formula, you will use quotes on both sides of the
string. For example, " " inserts a space between the first and last name columns.
The completed DAX formula will look like Figure 4.3:

Figure 4.3: Completed DAX example for Full Name

In Figure 4.4, you see the results of the completed expression in the Customer table:

Figure 4.4: Results of the Full Name calculated column in the Customer table

Now, let's take a look at an example of using string functions in DAX to create
calculated columns.

String functions – Month Year
Now that you have completed your first calculated column, let's build a calculated
column that stores the month-year value. The goal is to return a month-year column
with the two-digit month and four-digit year separated by a dash, making "MM-
YYYY". Let's build this calculation incrementally.

Select the Date (Order) table and then click New Column from the Table tools
ribbon. Write the following code in the formula bar and then hit Enter:

Month Year = 'Date (Order)'[Month Number of Year]

Chapter 4

[101]

As you begin validating the code, you will notice that this only returns the single-
digit month with no leading zero. Your next attempt may look something like the
following:

Month Year = "0" & 'Date (Order)'[Month Number of Year]

This will work for single-digit months; however, double-digit months will now
return three digits. Take a look at Figure 4.5:

Figure 4.5: Displaying Month Year

To improve upon this and only return the two-digit month, you can use the RIGHT
function. The RIGHT function returns a specified number of characters from the right
side of a string. Modify your existing DAX formula to look like the following:

Month Year = RIGHT("0" & 'Date (Order)'[Month Number of Year], 2)

The rest of this formula can be completed quite easily. First, to add a dash, the
following DAX code can be used:

Month Year = RIGHT("0" & 'Date (Order)'[Month Number of Year], 2) & "-"

For a full list of text functions in DAX, please go to the following
link: https://tinyurl.com/pbiqs-text

https://tinyurl.com/pbiqs-text

Leveraging DAX

[102]

Complete the Month Year formula by combining the current string with the Year
column. The completed example is seen in Figure 4.6:

Figure 4.6: Displaying Month Year

In Figure 4.7, you see the results of the completed expression in the Date table:

Figure 4.7: Results of Month Year calculated column in the Date table

In this example, you learned how to create a Month Year column using a combination
of the Right function with the ampersand operator. Next, you will learn an easier
method for achieving the same goal with the Format function.

FORMAT function – Month Year
As with any other language, you will find that there are usually multiple ways to do
something. Now you are going to learn how to perform the calculation that we saw
in the previous section using the FORMAT function. The FORMAT function allows you to
take a number or Date column and customize it in a number of ways. A side effect
of the FORMAT function is that the resulting data type will be text. Let's perform the
preceding calculation again, but this time using the FORMAT function.

You may have noticed that the Year column has a data type of
a whole number, and you may have expected that this numeric
value would need to be converted to a String prior to the combine
operation. However, remember that the ampersand operator will
automatically convert both inputs into a String before performing
the combine operation!

Chapter 4

[103]

Make sure you have the Date (Order) table selected, and then click on Create a New
Calculated Column by selecting New Column from the Table tools ribbon. In the
formula bar, write the following expression:

Month Year Format = FORMAT('Date (Order)'[Date], "MM-YYYY")

Now, let's take a look at the DATEDIFF function and how to implement conditional
logic with the IF function in DAX.

Age calculation
Next, you are going to determine each customer's age. The Customer table currently
contains a column with the birth date for each customer. This column, along with
the TODAY function and some DAX, will allow you to determine each customer's
age. Your first attempt at this calculation may be to use the DATEDIFF function in a
calculation that looks something like the following:

Customer Age = DATEDIFF('Customer'[Birth Date], TODAY(), YEAR)

The TODAY function returns the current date and time. The DATEDIFF function returns
the count of the specified interval between two dates; however, it does not look at
the day and month and therefore does not always return the correct age for each
customer.

Let's rewrite the previous DAX formula in a different way. In this example, you are
going to learn how to use conditional logic and the FORMAT function to return the
proper Customer Age. Please keep in mind that there are many ways to perform
this calculation.

Select the Customer Age column from the previous step and rewrite the formula
to look like Figure 4.8:

Figure 4.8: Customer Age calculation column

If you would like to take a full look at all the custom formatting
options available using the FORMAT function, please take a look at
https://tinyurl.com/pbiqs-format.

https://tinyurl.com/pbiqs-format

Leveraging DAX

[104]

When completed, the preceding code returns the correct age for each customer. The
FORMAT function is used to return the two-digit month and two-digit day for each
date (the Birth Date and TODAY's date). Following the logical test portion of the IF
statement are two expressions. The first expression is triggered if the logical test
evaluates to true, and the second expression is triggered if the result of the test is
false. Therefore, if the customer's month and day combo is less than or equal to
today's month and day, then their birthday has already occurred this year, and
the logical test will evaluate to true, which will trigger the first expression. If the
customer's birthday has not yet occurred this year, then the second expression
will execute.

In this example, you learned how to implement conditional logic with the IF
function. Now let's look at the SWITCH function, which can be used as an alternative
method to IF.

SWITCH() – age breakdown
Now that you have the customer's age, it's time to put each customer into an age
bucket. For this example, there will be four separate age buckets:

• 18-34
• 35-44
• 45-54
• 55+

The SWITCH function is preferable to the IF function when performing multiple
logical tests in a single DAX formula. This is because the SWITCH function is easier
to read and makes debugging code much easier.

Formatting code is very important for readability and maintaining
code. Power BI Desktop has built-in functionality to help out with
code formatting. When you type Shift + Enter to navigate down
to the next line in your formula bar, your code will be indented
automatically where applicable.

In the preceding DAX formula, comments were added by using
two forward slashes in the code. Comments are descriptive and are
not executed with the rest of the DAX formula. Commenting code
is always encouraged and will make your code more readable and
easier to maintain.

Chapter 4

[105]

With the Customer table selected, click New Column from the Modeling ribbon.
Type in the completed DAX formula as seen in Figure 4.9:

Figure 4.9: Conditional logic with SWITCH

The preceding formula is very readable and understandable. There are three logical
tests, and if a customer age does not evaluate to true on any of those logical tests,
then that customer is automatically put into the 18-34 age bucket.

The astute reader may have noticed that the second and third logical tests do not
have an upper range assigned. For example, the second test simply checks whether
the customer's age is 45 or greater. Naturally, you may assume that a customer
whose age is 75 would be incorrectly assigned to the 45-54 age bucket. However,
once a row evaluates to true, it is no longer available for subsequent logical tests.
Someone who is 75 would have evaluated to true on the first logical test (55+)
and would no longer be available for any further tests.

Let's take a look at another important task in DAX: retrieving data from a column in
another table. In Excel, you would just use the vlookup function, and in SQL, you
would use a join. In DAX, you use navigation functions to retrieve this data.

Navigation functions – RELATED
It's finally time to create a relationship between the Temperature table and the
Internet Sales table. The key on the Temperature table is a combination of the
region name and the month number of the year.

If you would like a better understanding of using the SWITCH
statement instead of nesting multiple IF statements, then you can
check out a blog post by Rob Collie at https://tinyurl.com/
pbiqs-switch.

https://tinyurl.com/pbiqs-switch
https://tinyurl.com/pbiqs-switch

Leveraging DAX

[106]

This column combination makes a single row unique in this table, as shown here, in
Figure 4.10:

Figure 4.10: Column combination that makes a single row unique

Unfortunately, neither of those two columns currently exists in the Internet Sales
table. However, the Internet Sales table has a relationship with the Sales Territory
table, and the Sales Territory table has the region. Therefore, you can determine
the region for each sale by doing a simple lookup operation. Well, it should be that
simple, but it's not quite that easy. Let's take a look at why.

Calculated columns do not automatically use the existing relationships in the data
model. Calculated measures automatically see and interact with all relationships in
the data model. Now let's take a look at why this is important.

In the following screenshot, I have created a new column in the Internet Sales
table and I am trying to return the region name from the Sales Territory table.
Take a look at Figure 4.11:

Figure 4.11: Sales Territory table

Note that there is no IntelliSense and that the autocomplete functionality is
unavailable as I type in Sales Territory. The reason for this is the calculated column
creates a row context and by default does not use the existing relationships in the
data model. There is a much more complicated explanation behind all this, but for
now, suffice to say that navigation functions (RELATED and RELATEDTABLE) allow
calculated columns to interact with and use existing relationships.

Chapter 4

[107]

If I rewrite the following DAX formula with the RELATED function, then you will
notice that IntelliSense has returned, along with the autocomplete functionality
that was previously discussed. The IntelliSense can be seen in Figure 4.12:

Figure 4.12: Temperature Key column

Now it's time to create a Temperature Key column on the Internet Sales table.
Create a new column on the Internet Sales table and then type in the DAX formula
seen in Figure 4.13:

Figure 4.13: Temperature Key column of the Internet Sales table

Now that the Temperature Key column has been created in the Internet Sales table,
let's create the relationship. Click Manage Relationships from the Home ribbon
and then click New... to open the Relationship editor window. Then complete the
following steps to create a new relationship. See the numbered items in Figure 4.14:

1. Select Internet Sales from the first drop-down selection list.
2. Select Temperature Key from the list of columns (scroll right).
3. Select Temperature from the second drop-down selection list.
4. Select Key from the list of columns.

Leveraging DAX

[108]

5. Click OK to save your new relationship:

Figure 4.14: Creating a new relationship

So far in this chapter, you have learned how to create calculated columns on tables.
These calculated columns increase the analytical capabilities of your data models
by adding columns that can be leveraged to describe your metrics. You also learned
how to create a concatenated key column in order to build a relationship between
the Temperature and Internet Sales table. In the next section, you are going to
learn how to use DAX to create calculated measures.

Calculated measures – the basics
Calculated measures are very different than calculated columns. Calculated
measures are not static, and operate within the current filter context of a report;
therefore, calculated measures are dynamic and ever-changing as the filter context
changes. You were introduced to filter context in the previous chapter. The concept
of the filter context will be slightly expanded on later in this chapter. Calculated
measures are powerful analytical tools, and because of the automatic way that
measures work with filter contexts, they are surprisingly simple to author.

Chapter 4

[109]

Before you start learning about creating measures, let's first discuss the difference
between implicit and explicit measures.

Implicit aggregations occur automatically on columns with numeric data types. You
saw this in the previous chapter when the month number column was incorrectly
aggregated after being added to a report. There are some advantages to this default
behavior—for example, if you simply drag the Sales Amount column into a report,
the value will be automatically aggregated and you won't have to spend time
creating a measure. As discussed in the next section, it is generally considered a
best practice to create explicit measures in lieu of implicit measures.

An explicit measure allows a user to create a calculated measure, and there are
several benefits to using explicit measures:

• Measures can be built on each other.
• They encapsulate code, making logic changes less time-consuming.
• They centrally define number formatting, creating consistency.

Calculated measures can do the following:

• They can be assigned to any table and further assigned to folders within
that table.

• They interact with all the relationships in the data model automatically,
unlike calculated columns.

• They are not materialized in a column, and therefore cannot be validated
in the Data View.

Now that you know what calculated measures are, let's take a look at how to
create them.

Calculated measures – basic aggregations
In this section, you are going to create four simple calculated measures. These
calculated measures will create additional metrics that can be used in visualizations
and reports to obtain deeper insights from your data:

• Total Sales
• Total Cost
• Profit
• Profit Margin

First, let's start by creating the Total Sales calculation.

Leveraging DAX

[110]

Total Sales
To create your first measure, select the Internet Sales table and then click New
Measure... from the Table Tools ribbon. See Figure 4.15:

Figure 4.15: Create a Total Sales measure

One of the benefits of creating explicit measures is the ability to centralize formatting.
Once the measure has been created, navigate to the Measure tools ribbon and
change the formatting to $ English (United States), as shown in Figure 4.16:

Figure 4.16: Change formatting to $ English (United States)

Chapter 4

[111]

You just created your first calculated measure! It was simple, and, you will soon
learn, extremely powerful. The total sales calculation is the sum of the sales amount,
however, another way to read that calculation is the sum of the sales amount within
the current filter context. You learned about filter context in the previous chapter
and it will be further discussed later in this chapter, but for now, just know these
seemingly simple calculations are very dynamic. Let's create some more calculated
measures.

Total Cost
Now let's create the Total Cost measure. Once again, this is a simple SUM operation.
Select the Internet Sales table, then click New Measure... from the Measure tools
ribbon and type in the following DAX formula:

Total Cost = SUM('Internet Sales'[Total Product Cost])

Remember to apply formatting to this new measure; it is easy to miss this step when
learning to create measures. The formatting should be $English (United States).

Profit
Profit is the next measure you will create. You may attempt to write something
such as the following:

Profit = SUM('Internet Sales'[Sales Amount]) - SUM('Internet
Sales'[Total Product Cost])

This calculation would be technically correct; however, it is not the most efficient
way to write code. In fact, another benefit of building explicit measures is that they
can be built on top of each other. Reusing existing calculated measures will make
the code more readable, and make code changes easier and less time-consuming.
Imagine for a moment that you discovered that the Total Sales calculation is
not correct. If you encapsulated all this logic in a single measure and reused that
measure in your other measures, then you need only change the original measure,
and any updates will be pushed to all other measure references.

Now it is time to create the Profit measure. Select your Internet Sales table and
then click on New Measure... from the Measure tools ribbon. Type the following
into the formula bar—remember to apply formatting afterward:

Profit = [Total Sales] - [Total Cost]

Leveraging DAX

[112]

This calculation returns the same results as the original attempt. The difference is
that now you are reusing measures that were already created in the data model. You
may have noticed that I referenced the name of the measure without the table name.
When referencing explicit measures in your code, it is considered a best practice to
exclude the table name.

Profit Margin
Now it's time to create the Profit Margin calculation (the profit margin is simply
(profit/sales). For this measure, you are going to use the DIVIDE function. The
DIVIDE function is recommended over the divide operator (/) because the DIVIDE
function automatically handles divide by zero occurrences. In the case of divide
by zero occurrences, the DIVIDE function returns blank.

Create a new measure on the Internet Sales table using the following code:

Profit Margin = DIVIDE([Profit], [Total Sales])

Next, set the formatting as a percentage. From the Modeling ribbon, click on the %
icon, as shown in Figure 4.17:

Figure 4.17: Setting formatting as a percentage

Functions in DAX have required and optional parameters. So far, you have only
learned about required parameters. Let's take a look at optional parameters.

Optional parameters
You may have noticed that the DIVIDE function accepted three parameters and you
only provided two. The third parameter allows you to set an alternative result for
divide by zero occurrences. This alternate result is optional. Optional parameters
are denoted by square brackets on both sides of the parameter. These optional
parameters are prevalent in many DAX functions. Take a look at Figure 4.18:

Chapter 4

[113]

Figure 4.18: Optional parameters in DAX functions

Optional parameters are very often overlooked by developers, but as you will learn,
there is a lot of functionality and value that can be achieved by leveraging these
parameters. Now, let's take a look at how and where to assign calculated measures.

Assignment of calculated measures
Unlike calculated columns, measures do not need to be assigned to a specific table
to function properly. Because of this, it is very easy and common to forget to make
sure the proper table is selected prior to creating a measure. This results in measures
being assigned to random tables during development. Fortunately, you do not need
to delete the measure and recreate it in the proper table, instead, you can simply
move measures from one table to another by changing the Home table.

To move a calculated measure from one table to another, you will follow these steps,
as you can see in Figure 4.19:

1. Select the measures.
2. Find the Measure tools ribbon.
3. Click the Home table dropdown and select the correct table:

Figure 4.19: Moving a calculated measure to a new table

Leveraging DAX

[114]

Calculated measures can be assigned to any table in your data model and will still
function properly. However, measures should be assigned to the table where it
logically makes the most sense. This way, the measure is easy to find and utilize
in visualizations and reports. Let's take a look at how measures can be logically
organized and grouped into folders.

Display folders
In Power BI, columns and measures can be assigned to folders. This is extremely
useful for organizing related measures and improving the overall usability of the
data model. By properly leveraging display folders, measures will be easier to find
and similar measures, like time intelligence calculations, can be grouped in their
own folder. As you can see in Figure 4.20, the newly created measures are mixed
in with the existing columns:

Figure 4.20: Calculated measures displayed in a table

Chapter 4

[115]

At the time of writing, adding measures to display folders can only be accomplished
from the Model View. Select Model View from the left navigation pane. Next,
expand the Internet Sales table and select the Profit measure. Finally, in the
Properties pane, find the Display folder property and type Measures. Take a look
at Figure 4.21:

Figure 4.21: Calculated measures displayed in a table

All of your measures can be moved to a display folder at one time.
Simply multi-select the measures to be moved by holding down
the Ctrl key while selecting each measure and then enter the folder
name. See the completed example in Figure 4.22:

Leveraging DAX

[116]

Figure 4.22: Calculated measures displayed in a table

Previously, we mentioned that these calculated measures are simple yet powerful.
These measures are powerful because filtering in DAX occurs automatically. Let's
take a deeper look at automatic filtering and filter context.

Filter context
The automatic filtering that occurs in Power BI is a really awesome feature and is
one of the reasons that so many companies are gravitating to this tool. The active
relationships that are defined in the data model, and that you learned how to create
in the previous chapter, are automatically used by DAX to perform the automatic
filtering of calculated measures. This is directly tied to the concept of the filter
context. You were introduced to the filter context in the previous chapter. I want
to briefly expand on the previous chapter here before discussing the CALCULATE
function.

A simple definition of the filter context would be that it is simply anything in your
report that is filtering a measure. There are quite a few items that make up the filter
context. Let's take a look at a few of them:

• Any attributes on the rows; this includes the different axes in charts.
• Any attributes on the columns.

Chapter 4

[117]

• Any filters applied by slicers (visual filters); slicers are discussed in the next
chapter.

• Any filters applied explicitly through the Filters pane.
• Any filters explicitly added to a calculated measure

In short, the filter context makes the authoring of calculated measures a simple and
intuitive process. A simple total sales calculation can be automatically filtered by
all the tables in your data model without having to write any additional logic into
your calculated measures. If you want to see total sales by customer, product name,
product weight, country, or any other number of columns in your data model,
simply add that column to your report and your measure is auto-magically filtered
thanks to the active relationships!

Calculate
The CALCULATE function is an extremely powerful tool in the arsenal of any DAX
author. In fact, the CALCULATE function is the single most important function in all
of DAX. This is because the CALCULATE function can be used to ignore, overwrite,
or change the existing filter context. You may be asking yourself why—why would
anyone want to ignore the default behavior of Power BI? Let's take a look at an
example.

Let's assume you want to return the total sales of each country as a percentage of
all countries. This is a very basic percentage of total calculation: Total Sales per
country divided by Total Sales for all countries. However, how do you get the total
sales of all the countries so that you can perform this calculation? This is where the
CALCULATE function comes into the picture. Take a look at Figure 4.23:

Figure 4.23: Calculating the total sales of all the countries

Leveraging DAX

[118]

To do the percentage of total calculation, you first need the Total Sales all
Countries on the same row as Total Sales. Therefore, you need to create a new
calculated measure that ignores any filters that come from the Country attribute.
Create a new calculated measure on your Internet Sales table using the following
DAX formula:

Figure 4.24: Use CALCULATE to ignore filters from Country

The calculation in Figure 4.24 will return all sales for all countries, explicitly ignoring
any filters that come from the Country column. Let's briefly discuss how and why
this works.

The first parameter of the CALCULATE function is an expression, and you can think
of this as an aggregation of some kind. In this example, the aggregation is simply
Total Sales. The second parameter is a filter that allows the current filter context
to be modified in some way. In the preceding example, the filter context is modified
by ignoring any filters that come from the Country attribute. Let's take a look at
the definition for the ALL function used in the second parameter of the CALCULATE
function:

ALL: Returns all the rows in a table, or all the values in a column, ignoring any filters
that may have been applied.

Alternatively, the REMOVEFILTERS function can be used instead of ALL to achieve the
same results. For this example, these functions can be used interchangeably. I find
that most developers new to DAX find REMOVEFILTERS a bit easier to understand.
Modify the measure created in the last step, Total Sales all Countries, to use
REMOVEFILTERS instead of the ALL function, as you can see in Figure 4.25:

Figure 4.25: Replace the ALL function with REMOVEFILTERS

Chapter 4

[119]

The most difficult challenge to creating our percentage of total calculation in DAX is
creating the total sales for all countries. With this calculated measure completed, let's
complete the percentage of total calculation.

The percentage of total calculation
Now, create another calculated measure on the Internet Sales table using the
following code. Make sure that you format the measure as a percentage:

% of All Countries = DIVIDE([Total Sales], [Total Sales all Countries])

In Figure 4.26, you can see the completed example with both of the new measures
created in this section. Without a basic understanding of the CALCULATE function,
this type of percentage of total calculation would be nearly impossible:

Figure 4.26: Completed example with new measures

Time intelligence
Another advantage of Power BI is how easily time intelligence can be added to your
data model. DAX has a comprehensive list of built-in time intelligence functions that
can be easily leveraged and add significant analytical value to your data model. In
this section, you are going to learn how to use these built-in functions to create the
following measures:

• Year to Date Sales
• Year to Date Sales (Fiscal Calendar)
• Prior Year Sales

Leveraging DAX

[120]

In order to leverage time intelligence functions in DAX, you must have a date table
in your data model and that date table must have all available dates with no gaps.
These are very important conditions that must be met. Oftentimes, developers try
to use the date column from their transaction table (fact table). This can result in
calculations that do not work and return incorrect results. In the previous chapter,
you learned how to properly build a relationship from your date table to your fact
table and multiple methods for marking your date table as a date table. Now that we
have added some clarity here, let's create a year to date sales calculation.

YTD Sales
Create a new calculated measure on your Internet Sales table using the following
DAX formula. Remember to format the measure as $English (United States):

YTD Sales = TOTALYTD([Total Sales], 'Date (Order)'[Date])

YTD Sales (fiscal calendar)
Maybe your requirement is slightly more complex, and you need to see the year to
date sales based on your fiscal year end rather than the calendar year-end date. The
TOTALYTD function has an optional parameter that allows you to change the default
year-end date from 12/31 to a different date. Create a new calculated measure on
your Internet Sales table using the following DAX formula:

Fiscal YTD Sales = TOTALYTD([Total Sales], 'Date (Order)'[Date],
"03/31")

Now, let's take a look at both of these new measures in a table in Power BI:

Take a look at the alternative methods for calculating time
intelligence in the DAX cheat sheet at https://tinyurl.com/
pbiqs-daxcheatsheet.

https://tinyurl.com/pbiqs-daxcheatsheet
https://tinyurl.com/pbiqs-daxcheatsheet

Chapter 4

[121]

Figure 4.27: Comparing YTD Sales with Fiscal YTD Sales

The newly created measures YTD Sales and Fiscal YTD Sales have both been
added to the preceding table. Let's take a closer look at how these two measures are
different; the relevant sections in the table are annotated with the numbers one to
four, corresponding to the following notes:

1. The amount displayed for December 2005 is $3,266,374. This is the
cumulative total of all sales from January 1, 2005 to December 31, 2005.

2. As expected, the cumulative total starts over as the year switches from 2005
to 2006; therefore, the YTD Sales amount for January 2006 is $596,747.

3. In the Fiscal YTD Sales column, the cumulative total works slightly
differently. The displayed amount of $5,058,072 is the cumulative total of
all sales from April 1, 2005 to March 31, 2006.

4. Unlike the YTD Sales measure, the Fiscal YTD Sales measure does not start
over until April 1. The amount displayed for April 2006 of $663,692 is the
cumulative total for April. This number will grow each month until May 31,
at which point the number will reset again.

Prior Year Sales
A lot of time series analysis consists of comparing current metrics to the previous
month or the previous year. There are many functions in DAX that work in
conjunction with the CALCULATE function to make these types of calculations possible.
In this section, you are going to create a new measure to return the total sales for the
prior year.

Leveraging DAX

[122]

Using Figure 4.28 as a reference, create a new calculated measure on your Internet
Sales table for Prior Year Sales:

Figure 4.28: Create a Prior Year Sales calculation

CALCULATE allows you to ignore or even change the current filter context. In the
preceding formula, CALCULATE is used to take the current filter context and modify
it to one year prior. This calculated measure also works at the day, month, quarter,
and year level of the hierarchy. For example, if you were looking at sales for June
15, 2020, then the Prior Year Sales measure would return sales for June 15, 2019.
However, if you were simply analyzing your sales aggregated at the month level
for June 2020, then the measure would return the sales for June 2019.

In this section, you learned how to add time series analysis to your data model,
adding significant analytical value and allowing you to extract valuable insights
from your data across time. In other programming languages, it would take
significant amounts of code and an in-depth validation process to perform the
same calculations that can be achieved in DAX with minimal effort.

Role-playing tables with DAX
In Chapter 3, Building the Data Model, you learned how to develop your data model
to deal with role-playing tables, by importing a table multiple times. We mentioned
then that there was an alternative method using DAX. In this section, we will explore
this alternative method and the pros and cons of using DAX versus the method you
have previously learned.

For a comprehensive list of all the built-in time intelligence
functions, please take a look at https://tinyurl.com/pbiqs-
timeintelligence.

https://tinyurl.com/pbiqs-timeintelligence
https://tinyurl.com/pbiqs-timeintelligence

Chapter 4

[123]

Since leveraging DAX does not require importing a table multiple times, you will
immediately gain savings on storage and, unlike the other method, with DAX you
will not need to manage multiple tables in Power BI Desktop.

The DAX method requires that inactive relationships be created in order to work
correctly. Inactive relationships are not often used in DAX because they are not used
automatically like active relationships. Unlike active relationships, you can have
more than one inactive relationship between two tables.

Let's create a new relationship between the Internet Sales table and the Date
(Order) table. First, open the relationship editor by referring to Figure 4.29 and the
steps following:

Figure 4.29: Launch the Manage relationships dialog box

1. Navigate to the Report View.
2. Select the Modeling ribbon across the top of Power BI Desktop.
3. Click Manage relationships.

Leveraging DAX

[124]

Once the Manage relationships box appears, click on New… to create a new
relationship. Continue creating the relationship with the steps by referring to Figure
4.30 and the steps following:

Figure 4.30: Create the inactive relationship between Internet Sales and Date (Order)

1. Select Internet Sales from the drop-down menu.
2. Select the ShipDateKey column from the list of columns.
3. Select Date (Order) from the drop-down menu.
4. Select the DateKey column from the list of columns.
5. Do not select Make this relationship active.
6. Click OK.

Chapter 4

[125]

The new relationship can be observed in Figure 4.31, which is a screenshot of the
Manage relationships dialog box:

Figure 4.31: New relationship between Internet Sales and Date (Order)

Now that the inactive relationship has been created, we can create the calculated
measure to return Total Sales by Ship Date. The completed calculated measure can
be seen in Figure 4.32:

Figure 4.32: New calculated measure

This measure will make use of two functions in DAX. First, the CALCULATE function
is used here because the filter context is going to be modified to use the inactive
relationship rather than the active relationship. Second, the USERELATIONSHIP
function specifies that the Internet Sales table should be filtered by ShipDateKey
rather than the active relationship on OrderDateKey.

Leveraging DAX

[126]

The completed measure can be seen in Figure 4.33 along with the original Total
Sales calculation:

Figure 4.33: Validating the new calculated measure

In Figure 4.33, the Total Sales measure is returning the total sales based on the
active relationship in the data model, which is on OrderDateKey, therefore $3,266,373
is returned for the year 2005. Alternatively, the Total Sales (by Ship Date)
measure is returning $3,105,587 in sales.

This approach does not require importing additional tables and therefore is superior
to the method you learned in Chapter 3, Building the Data Model, for optimizing space
in your data model. However, with the DAX method, you would be required to
create a new measure for every measure in your data model that you wanted to see
by the Ship Date. Therefore if you had 50 measures in your table, you would create
a new version of each of those measures and would specify that the new measure
should use the inactive relationship on ShipDateKey rather than the current active
relationship. Because of this reason alone, the method you learned in Chapter 3,
Building the Data Model, is the most common approach to handling role-playing
tables.

In this section, you learned an alternative method to provide support for role-playing
tables in Power BI Desktop. This method has historically required significantly more
development effort and therefore has not been as popular as the method you learned
previously. However, by leveraging calculation groups, you can create a single
measure that will support almost all your role-playing needs!

With the addition of external tools and calculation groups, you
can now create one measure to support role-playing tables!
This makes the DAX method significantly easier to implement
than ever before. Want to learn more? Check out the following
YouTube video on this implementation: https://tinyurl.com/
RolePlayingTables.

https://tinyurl.com/RolePlayingTables
https://tinyurl.com/RolePlayingTables

Chapter 4

[127]

As we bring this chapter to a close, I feel it's necessary to mention that there are
several developer-friendly tools that can help the DAX developer gain better insights
into their data models. These tools are outside the scope of this book but as you
continue your journey with DAX, you will want to learn more about DAX Studio
and the Tabular Editor.

Summary
In this chapter, you learned that DAX allows you to significantly enhance your data
model by improving the analytical capabilities with a relatively small amount of
code. You also learned how to create calculated columns and measures and how
to use DAX to perform useful time series analysis on your data.

This chapter merely scratched the surface of what is possible with DAX. As you
further explore the DAX language on your own, you will quickly become a proficient
author of DAX formulas. As with everyone who learns DAX, you will inevitably
learn that there is a layer of complexity to DAX that will require further education
to really master. When you get to this point, it would be advantageous to look for
classes or books that will help you to take your skills to the next level and truly
master DAX!

[129]

5
Visualizing Data

Power BI is best known for its impressive visualization capabilities. Up to this point,
the focus has been on importing data and modeling it to your specifications. The goal
of this chapter is to bring that data to life through impactful visuals. The number of
visuals is vast, and the aim is to provide an overview of most of the included visuals.
It is impossible to do an in-depth tour of all the options; instead the focus will be on
getting familiar with the basic configuration, appropriate use for each of the built-in
visuals, and how to acquire custom visuals not included in Power BI by default. The
topics detailed in this chapter include the following:

• Report view basics
• Creating new visuals
• Filtering visualizations and data
• Visualizing tabular data
• Visualizing categorical data
• Visualizing trend data
• Visualizing KPI data
• Visualizing data using cards
• Visualizing geographical data
• Natural language
• Visuals from analytics
• Power BI custom visuals
• Data visualization tips and tricks

Visualizing Data

[130]

At the time of this book's publication, there are 36 readily available visuals in Power
BI Desktop including the Shape map and Azure map visuals that are in preview and
must first manually be enabled to use. Let's get started with bringing the model you
have worked on up to this point to life!

To turn on Preview features, click File | Options and settings | Options | Preview
features and check the box next to Shape map visual and Azure map visual.

Figure 5.1: Enable Power BI preview features on the Options menu

As features are moved from preview to generally available, they will automatically
fall off the preview features list and be automatically available upon loading Power
BI Desktop. Other preview features are available but because they are not related to
visualizations they will not be explored in this chapter.

With Power BI's rapid update cycle, there will be many visuals
added to the application over time. If you would like to leverage
these as soon as they are available, you can find them in the
Preview features section of Power BI Desktop's options. Figure 5.1
shows how to access the Preview features setting. Once you have
enabled something in this area, it usually requires you to restart
Power BI Desktop, so make sure to save your work!

Chapter 5

[131]

Report view basics
As soon as you launch Power BI Desktop and close the initial splash screen, you will
find yourself in the Report view, which is where you will stay for the duration of this
chapter. In the previous chapter, you explored the Model view as well as the Data
view, but these areas are not necessary for the visualization work discussed in this
chapter. There are many items of interest in this initial Report view area that need
to be discussed so that you can work efficiently. Let's open the completed Power BI
file from Chapter 4, Leveraging DAX, which includes all of the calculated columns and
calculated measures that will be used in the upcoming visuals.

Let's review the key areas of Power BI Desktop:

1. Report view: Displays the report canvas, page navigation, and panes for
customizing visualizations within the report. This is the default view open
when Power BI Desktop is launched.

2. Report canvas: The main design area holding all report visuals.
3. More visuals: A menu with options to access custom visuals from

AppSource or local files. After importing, these will appear in the
Visualizations pane.

4. Filters pane: Apply filters to various scopes:
• Filters on this page applies to every visual on the selected page.
• Filters on all pages applies to every visual on every page in the

report.
• Filters on this visual only appears when a visual is selected, and

only affects the selected visual.

5. Visualizations pane: Consists of four sections working together to customize
the data and formatting of visualizations:

• The Visuals section displays all available visualizations including
enabled preview and imported custom visuals.

For this chapter, you can build on top of the completed pbix
file from Chapter 4, Leveraging DAX. If you would like to keep
your work from each chapter separate, please follow the noted
steps here. Open the completed pbix file called Chapter 5 -
Visualizing Data.pbix. Then, under the File option, choose
Save As and give this file a new name for the work you will be
doing in Chapter 5, Visualizing Data.

Visualizing Data

[132]

• The Fields section displays buckets used to populate the different
areas on the visual and varies based on the visual chosen. For
instance, a table will have a single Values bucket, while a pie chart
will have Legend, Details, Values, and Tooltips buckets.

• The Format section controls the look and feel of the visual. The
formatting options will vary based on the visual selected but
generally include title, font size and color, and data label settings.

• The Analytics section allows for the addition of reference lines like
minimum or maximum thresholds, the median line, and an average
line. The options will vary based on the visual selected and often
allow for both static and data-driven lines.

6. Fields pane: Displays all available fields to be added to visuals and filters. If
a table or column is hidden in the data view it will not appear in the Fields
pane.

7. Page navigation: Select which report page to display on the canvas. Each
page has a limited work area where visuals are displayed, so it is common
to have more than one page in a Power BI report. Pages can be added by
clicking the plus button at the end of the page list.

Figure 5.2: First view of Power BI Desktop

Chapter 5

[133]

It is important to note that when working with visual filters, a visual must be
selected. A visual is selected when you see the anchor points around the visual
in question after clicking on it. Now that you are familiar with the Report view
features and layout, it is time to start visualizing!

Creating new visuals
Before exploring the various visualizations available in Power BI let's look at the
three ways to add visuals to the report canvas. All these methods will result in the
same final product. However, depending on the type of visualization needed it may
cut a few clicks off your workflow to use one method over another.

The first, and least common, method for adding a visual is using the New visual
button on the ribbon. This will add a blank stacked column chart to the Report
canvas at which point you can start to drag and drop fields or check the box next to
a field to add it to the visual. If a stacked bar chart is not the desired visual, it can be
changed by selecting a different visual from the Visualizations pane:

Figure 5.3: New visual button on the Home ribbon to add a blank visual

Visualizing Data

[134]

The second method for creating a new visual is starting from the Fields pane. To get
started simply check the box next to a field or drag a field and drop it on the Values
bucket in the Visualizations pane. A new visual will be created based on the data
type of the field selected. The result is generally a clustered column chart for numeric
fields and a table for non-numeric fields. You can then change to the desired visual if
the correct type was not generated automatically.

Figure 5.4: Create a new visual by checking the box next to any item in the field list

The final method is to start from the Visualizations pane, which allows for a more
customized visualization creation experience. Using this method, you will first
determine the type of visual needed and select it from the list. The result will be a
blank visual that can then be populated with the desired fields being checked off or
dragged from the Fields pane to the field buckets in the Visualizations pane.

Chapter 5

[135]

Figure 5.5: Create a blank visual of your choice by clicking on any item in the Visualizations pane

Now that you have a good understanding of the various methods for creating new
visualizations on the Report canvas, let's get to work building some high-impact
visuals.

Filtering visualizations and data
Filtering the data that users will see within a Power BI report is the most effective
way to answer very specific questions about that data, and there are many ways to
accomplish this. One of Power BI's most useful features is its ability to allow users to
interact with a visual, which will then apply the selection as a filter to the rest of the
visuals on that page. This is known as cross-filtering. This behavior really puts the
power into the user's hands, and they can decide how they want to filter the visuals.
This makes a report much more robust because it can answer many more questions
about the data without the need to create and maintain additional pages or visuals.

Visualizing Data

[136]

Along with this functionality, report developers can add more visible and explicit
forms of filtering using the slicer visual that is available in the Visualizations pane.
This provides the option to choose a very specific field from the data that you know
end users will want to use to filter some or all of the visualizations on the page.

The default interaction between two visuals is called cross-highlighting. Consider
a report with a bar chart showing sales by country and a pie chart showing profit by
age. Under the default behavior, selecting the United States in the bar chat would
cause the pie chart to continue showing sales for all countries while highlighting
the slicer that corresponds to the United States. This is very useful for seeing how a
subset of one visual is represented inside another. The interaction can be modified to
cross-filter rather than highlight. With the cross-filter behavior, selecting the United
States in the bar chart would filter out all data except the United States from the pie
chart, reducing the overall cumulative profit value. This interaction is useful when
looking to explore specific subsets of report data across all visualizations.

Now, let's dive in and get a better understanding of these two filtering options, as
they will most definitely be elements in the finished reports.

Cross-filtering and cross-highlighting
Almost every single visual that is readily available within Power BI has some sort of
element that users can interact with. At the same time, every visual can be impacted
by these very same elements. This provides a lot of flexibility when it comes to
deciding which visuals to include on a report page. Cross-highlighting will be
covered again later in this chapter, but it is important to understand how this feature
works so it can be leveraged throughout the examples to come. Let's create two very
simple visuals based off the current data model so you can see exactly how cross-
highlighting works. For right now, let's not worry about the details of these visuals
as they will be fully described in later sections of this chapter.

Let's look at setting up the example:

1. From the Visualizations pane, select the Stacked column chart. Make sure
the anchor points discussed earlier are visible. If necessary, click on the blank
chart placeholder on the Report canvas so the anchor points will appear.

2. From the Fields pane, check the box next to Total Sales from the Internet
Sales table. Notice that the field shows up under the Values bucket of the
Fields section.

3. From the Fields pane, drag Sales Territory Country from the Sales Territory
table to the Axis bucket in the Fields section. Resize the visual to make it
easier to read the labels. Reference Figure 5.6 to validate that everything is
set correctly.

Chapter 5

[137]

Figure 5.6: Stacked column chart showing sales by country

4. You can already start to interact with any of the columns in the chart, but
since this is the only visual, it really isn't that exciting. Add another visual to
the Report canvas; make sure you left-click somewhere in the empty space so
that no visual is currently selected.

5. Next, from the Visualizations pane, select the Pie chart, which will be added
to the Report canvas. You may have to move the visual to a location more to
your liking.

6. In the Fields pane, check the box next to Age Breakdown in the Customer
table. If it does not go to the Legend bucket, drag it there.

You may notice that some of the visual elements do not meet your
standards. For example, the size of the text for various items in this
visual is far too small to read. These are the types of changes that
would be made in the Format area but we will not be doing so in
this specific example. Common formatting options for each of the
visuals will be discussed within their respective sections in this
chapter.

Visualizing Data

[138]

7. Using either of the two methods described so far, add Profit from the
Internet Sales table to the Values bucket. See Figure 5.7 to verify the setup:

Figure 5.7: Pie chart showing profit by age breakdown

Now that the example is all set and there are two visuals in the Report canvas, you
can really see how cross-highlighting works. Select (left-mouse-click) the column
labeled United States in the stacked column chart. You will immediately see that
the pie chart changes to having a much smaller highlighted area. By hovering
over the 35-44 section of the pie chart, you can now see that the United States
makes up $246,952.81 of the $977,695.57 total for that category. This same type
of highlighting can be done by selecting a slice of the pie chart, which will then
highlight a subset of the stacked column chart. Just with this simple example, you
can see how effective cross-highlighting is in answering questions about the data.
Keep this in mind as you move forward with the other examples so you can keep
seeing the impact highlighting has.

Edit interactions
Throughout all the examples to come, you will have the capability of using cross-
highlighting and cross-filtering. Almost everything seen inside a visual can be
selected, and it will affect all the other visuals within that same report page. This
behavior can be altered though, and there will be situations where you do not want a
specific visual to be filtered by any others.

Chapter 5

[139]

The way to control this is through an option called Edit interactions, which can
be found on the Format ribbon when a visual is selected. When you select the Edit
interactions button, you will see new icons next to all the other visuals on the current
page, as seen in Figure 5.8. In this example, the pie chart is selected and you can now
decide if any of the other visuals will be affected by cross-highlighting or cross-
filtering from the pie chart. The two primary icons are a column chart with a funnel
in the lower-right corner, which lets us know that the visual will be cross-filtered,
and a circle with a line through it designating that the visual will not be affected at
all; no filtering or highlighting will occur when interacting with the paired visual.
Based on the visual type, there will be an icon that looks like a column chart but no
funnel in the lower-right corner, which you can see on the stacked column chart.
This means that the visual will be cross-highlighted rather than filtered, as shown
in Figure 5.8. This option is something that you will have to do for each individual
visual.

Figure 5.8: Change default cross-filtering and cross-highlighting behavior with Edit interactions

Visualizing Data

[140]

In general, all visuals allow the options for no interaction and filtering. Only a subset
of visuals, like the bar, column, and pie charts, allow highlighting. The default
interaction behavior is highlighting. If highlighting is not available for the visual
pair, then the default behavior is filtering.

Slicer
Now that you know cross-filtering will always be an option for users, what do you
do when end users want to filter by something that isn't used inside any of the
visuals? This is where the Slicer visual comes into play. The Slicer visual only allows
one field to be displayed but, depending on the data type of that field, different
presentation options will be available.

The slicer has a different set of options based on the following types of data being
displayed:

• String/text
• Numeric
• Date

Let's explore these different options with the visuals that have already been built.

String/text
Let's start by setting up a slicer with string or text values:

1. Ensure no other visuals are selected by clicking any blank area on the
Report canvas.

2. In the Visualizations pane, select the Slicer. Move it to some place
convenient within the Report canvas. You can use the anchor points to
resize the visual as you see fit.

Chapter 5

[141]

3. In the Fields pane, check the box next to Temperature Range from the
Temperature table to add it to the selected slicer Fields bucket.

Figure 5.9: Slicer showing the Temperature Range field

The slicer will default to the List view. This allows users to see a distinct list of
all the options they can now filter on from the specific field. You should see four
temperature options in the list each with a blank box to their left. Clicking in a box
will single-select a member from the list resulting in other visuals being filtered.

Visualizing Data

[142]

If you were to select the Cold option, the stacked column chart would be showing
the Total Sales by Sales Territory Country when the weather was cold.

Figure 5.10: Stacked column chart filtered to the Cold Temperature Range

To multi-select, you have two options. The first is to hold down
the Ctrl key on your keyboard while making your selections. The
second option lies within the Format area under the Selection
Controls expandable menu. Here, you will find an option called
Single Select, which is set to On by default, and by turning this off
you no longer need to hold the Ctrl key to multi-select.

Chapter 5

[143]

There is an exception to the rule that a slicer accepts only one field, and that is in
relation to hierarchies. If hierarchical data is used as a filter, multiple fields may be
added to the slicer's Field bucket. When this happens, the slicer will display a stair-
stepped list or drop-down set of values. The slicer behaves the same as described
in this section but allows for a much more user-friendly display of data. By using
hierarchies, it is possible to create much larger lists of values while keeping it easy
for users to find the members by which to filter. The hierarchies used in a slicer can
be explicitly defined in the data model, or they can instead be created automatically
by dragging multiple fields from the same table into the slicer, or even multiple
fields from different tables if a relationship exists between the tables.

Let's set up a slicer with a hierarchy:

1. Ensure no other visuals are selected by clicking any blank area on the Report
canvas.

2. In the Visualizations pane, select the Slicer. Move it to some place
convenient within the Report canvas.

3. In the Fields pane, check the box next to Sales Territory Drilldown from the
Sales Territory table to add it to the selected slicer Field bucket.

Figure 5.11: Slicer with the Sales Territory Drilldown hierarchy

Unique to slicers using string/text values is the ability to add search functionality.
Clicking the ellipses (…) in the top-right corner of the slicer header will reveal a
menu of options, the first of which is Search.

Visualizing Data

[144]

Adding a search option greatly improves the user experience when working with
large lists.

Figure 5.12: Enable search on slicers using a string/text field

Using hierarchies in slicers is an easy way to reduce the number of slicers on a report
page, which in turn will free up valuable canvas real estate for storytelling through
visuals.

Numeric
Now, add another slicer to the current report page, which uses a numeric field,
to explore the numeric range slicer:

1. Ensure no other visuals are selected by clicking any blank area on the
Report canvas.

2. From the Visualizations pane, select the Slicer. Move and resize it as you
see fit.

3. From the Fields pane, check the box next to Year from the Date (Order) table.

Immediately, you will see a very different presentation for the filter. A numeric
field will result in a sliding bar that can be moved from either side to give a range
of values, which will be used to filter the other visuals on the page. By moving the
left end of the slider one value to the right, the year 2005 will be removed from the
selected range and the data in the visuals has changed. See Figure 5.13.

Chapter 5

[145]

The slicer can also be set to use the List format that was seen in the temperature
slicer example above. To change the display format, click the down arrow located
in the upper-right corner of the slicer. If the down arrow and eraser are not visible
simply hover the mouse over the slicer.

Figure 5.13: Display options for slicers using a numeric field

The format options from Figure 5.13 are as follows:

• List: A distinct list of values from the selected field. Best used when there are
a small number of options to choose from.

• Dropdown: Drop-down menu containing a distinct list of values from the
selected field. Like the List option in functionality, but choices are hidden
until a user expands the dropdown. Also best used for a smaller set of values
so users don't have to scroll through hundreds of choices.

• Between: This choice will only present itself for fields that are of the numeric
and date data types. It allows users to specify a boundary-inclusive range of
values. This means a range between 100 and 500 will include data points 100
and 500 rather than being filtered out.

• Less than or equal to: Similar to the Between option, but the sliding scale can
only be adjusted from the right side, the upper boundary, which is included
in the filter values.

• Greater than or equal to: This is the same as the previous option, except you
can only adjust the sliding scale from the left side, the lower boundary, which
is included in the filter values.

When using the List option for a smaller set of filter choices, try
changing the orientation from vertical to horizontal. If you add
a background color to this setup, it gives the feeling of having
buttons to filter with. To set this up, just go to the Format area of
the slicer. Expand the General area and switch the value within
the Orientation section to Horizontal. Then, expand the Items area
and select a font color and background color of your choice, and
you will see the design feels like a set of buttons.

Visualizing Data

[146]

Be sure to consider the context in which a numeric filter will be used and decide the
appropriate format. A dropdown or a list may be more suitable when filtering tire
sizes as the user will likely be looking for a single or small range of values. However,
when filtering based on price, one of the range options, such as Between, may be
more applicable due to the vast variations in prices based on manufacturer, size,
mileage rating, and so on, and this would make searching through a list very time-
consuming.

Date
Add a fourth slicer to the current Report page, which uses a Date field:

1. Ensure no other visuals are selected by clicking any blank area on the
Report canvas.

2. From the Visualizations pane, select the Slicer. Move and resize it as you
see fit. From the Fields pane, check the box next to Date from the Date
(Order) table.

At first glance it appears Power BI has just generated another numeric range slicer.
However, the lower and upper boundaries are dates. Clicking on either boundary
will display in a calendar to aid in selecting a date.

Figure 5.14: Calendar displayed when selecting a date on a slicer using a date field

Chapter 5

[147]

In addition to the options available to the text and numeric slicers, the date slicer
adds relative date and time formats. The relative filter, shown below, allows ranges
to be set relative to the current date or time. It can be configured to look at the last,
current, or next N number of units. The relative units can be days, weeks, months,
or years for a relative date. The relative units can be minutes or hours for a relative
time.

Figure 5.15: Display options for slicers using a date field

You have now seen a couple of different ways to allow users to filter the visuals that
have been created for them. Cross-filtering will always be there for users, but you
can take a more traditional route with the Slicer visual and present them specific
options they would find meaningful to filter the data.

Visualizing Data

[148]

The last step is to rename this report page from Page 1 to Slicers by right-clicking the
page name and selecting Rename Page.

Figure 5.16: Options menu to duplicate or rename report pages

With the slicers created, let's dive into the various ways to visualize data starting
with the most foundational of all visualizations: tables and matrices.

Visualizing tabular data
There are many options within Power BI to visually represent data, but sometimes
users may want to see and compare detail-level data and exact values. In these
scenarios, using the Table or Matrix visual is the most effective option. When
leveraging either of these two visuals, it is important to take advantage of the
Format section of the Visualizations pane to ensure that users can easily interpret
the data that is being presented. One of the best ways to bring attention to values
of importance with these visuals is by using Conditional formatting. This section
will also take advantage of the hierarchies created in Chapter 3, Building the Data
Model, to allow for drilldowns within the visuals.

Chapter 5

[149]

Table
The table visual is perfect for looking at many values (measures) for a category. To
really make the table shine, you will also want to take advantage of the Conditional
formatting options. In this example, you will be using the Sales Territory Region
as the category and looking at four different values to analyze each region's
performance.

Let's look at setting up a table:

1. Add a new page to the report by clicking the plus icon at the far right of the
page list below the Report canvas.

2. Rename the new blank page from Page 1 to Tabular Data.
3. From the Visualizations pane select the Table visual. Resize it to take up a

little less than half the Report canvas. Notice, like the slicer, that there is only
one bucket in which to populate fields, called Values.

4. Add the following fields by locating them in the Fields pane and clicking the
checkbox next to each:

• Sales Territory Region from the Sales Territory table
• Total Sales from the Internet Sales table
• Profit from the Internet Sales table
• Total Cost from the Internet Sales table
• Total Transactions from the Internet Sales table

Visualizing Data

[150]

See Figure 5.17 for reference:

Figure 5.17: A table visual with Sales Territory Region and several measures

Already, you can see how this table provides great insights about the selected
category, Sales Territory Region. While the default formatting effectively displays
the data there are many formatting options that can be adjusted to enhance the
table's appearance. First, change the size of the text for the data, as well as the
headers:

1. With the Table visual selected, go into the Format section (paint roller icon)
of the Visualizations pane and expand the Column headers section.
There are many options that can be adjusted, but for now let's simply
adjust the Text Size option to something larger, making it easier to read the
headers.

2. Next, expand the Values area and make the same change here for the Text
Size option.

Chapter 5

[151]

Figure 5.18: The Format section of the Visualizations pane offers many options to
customize visualizations

Now that the table is easier to read, let's explore the Conditional formatting options,
which will provide customized text or background colors based off data values:

1. Return to the Visualizations pane's Fields section where the five fields
previously added can be seen under the Values bucket. Note the small drop-
down arrow next to each field.

2. Select the arrow next to Total Sales and locate the option for Conditional
formatting, as shown in Figure 5.19. With the mouse over the Conditional
formatting option, you will be presented with several choices that are
similar in functionality and setup. Select the Background color option.

Visualizing Data

[152]

Figure 5.19: Conditional formatting options available from a field in the Visualizations pane

3. In the resulting menu, place a checkmark in the box that is in the bottom left
labeled Diverging.

Figure 5.20: Background conditional formatting configuration screen

4. Click OK.

Chapter 5

[153]

Notice that the Total Sales column is color-coded to easily identify the regions that
are good (green) and bad (red) performers. This is something that can be applied
to any columns you feel would be enhanced by conditional formatting. With the
use of this table visual, you can gain a very quick and detailed understanding of
performance for the Sales Territory Region category.

Figure 5.21: Background conditional formatting applied to the Total Sales field in the table visual

Often, the report consumers will need to see how data from multiple categories
intersect. To do this, you will explore the matrix, which builds on the foundation
created by the table visualization.

Matrix
Where a table does a great job of allowing users to consume tons of detailed data
about a single category, the Matrix visual can accomplish this for more than one
category. The Matrix visual allows users to select a category for the rows and
columns allowing them to see detailed data at a cross-section of two categories.
Where a table will display duplicate values, a matrix will aggregate the data.
Conditional formatting is also available for use within the Matrix visual and is
incorporated in the same fashion as accomplished in the previous example. Other
than Conditional formatting, the matrix visual can take advantage of established
hierarchies to give users the capability of drilling down into more granular data.
Many of the other visuals can also take advantage of hierarchies, but for tabular
data the Matrix visual does a great job with this.

It is important to remember cross-highlighting and cross-filtering
with the table visual. Any of the rows that are present within the
table can be selected and will apply a filter to all other visuals on
the same page.

Visualizing Data

[154]

Let's look at setting up a Matrix:

1. Ensure no other visuals are selected by clicking any blank area on the Report
canvas.

2. From the Visualizations pane, select the Matrix.
3. From the Fields pane, drag Sales Territory Drilldown from the Sales

Territory table to the Rows bucket.
4. From the Fields pane, drag Date (a natural hierarchy in Power BI) from

the Date (Order) table to the Columns bucket. This will bring in the Year,
Quarter, Month, and Day fields.

5. Finally, from the Fields pane, drag Total Sales and Profit from the Internet
Sales table to the Values bucket.

See Figure 5.22 for reference. Move and resize the matrix as you see fit.

Figure 5.22: Field selection for the matrix visual

Chapter 5

[155]

Now, you can see that the amount of insight available to report consumers is even
greater than that of the Table visual. You should apply the same format changes to
the header and value Text size as were applied to the Table at this point. The Matrix
allows users to see detailed information about the different geographic regions, as
well as a breakdown per year. Also, you will see that there are some new icons in
the upper left of the visual that relate to the drilldown feature referenced earlier in
this chapter. Because hierarchies are present on both the rows and columns, you
must decide which you would like to expand for further details from the Drill on
drop-down menu. Focus solely on the rows option and expand the geographical
category. The first upward-pointing arrow, which should be currently grayed out,
allows users to move up a level in the hierarchy. The button is unavailable because
the highest level of the hierarchy is currently display. The option just to the right
of this, which is depicted by two disconnected downward arrows, will change the
category to the next level of the hierarchy, which is the Sales Territory Country
in this example. Select this option two times so the Sales Territory Region level
of the hierarchy is displayed. Notice that the higher levels of the hierarchy are
not displayed in the report. The third option, which is depicted by two connected
downward arrows, will also go down one level at a time through the hierarchy,
but results in the previous (higher) level continuing to be visible on the matrix.
By having the Matrix and Table next to each other, you can see the difference
in detail that can be achieved by each of them. Both, though, can benefit greatly
from Conditional formatting.

Visualizing categorical data
Where the Table and Matrix visuals allow for a detailed look at multiple measures,
the visuals in this section are best for displaying a data value across multiple
categories. In the upcoming visuals, you will be displaying bars, columns, and
other visual elements, which will be proportional to the data value. These visuals
have a far less detailed view of the data, but it is very easy and quick to distinguish
the differences of the values within the chosen categories. All of the visuals allow
for cross-highlighting, cross-filtering, and the use of drilldowns, which will not be
a focus since it was covered in the previous examples. This section will focus on
how to understand and configure the following visuals:

• Bar and column charts
• Pie and donut charts
• Treemaps
• Scatter charts

Visualizing Data

[156]

Continue using the same Power BI report from the previous examples. Start by
creating a new report page called Categorical Data.

Bar and column charts
Both the Bar and Column charts are very similar in setup and how they visualize
data. The only difference here will be the orientation: the Bar chart uses rectangular
bars horizontally where the length of the bar is proportional to the amount of data,
while the Column chart displays the bars vertically, but both are used to compare
two or more values. Both visualizations have three different formats: Stacked,
Clustered, and 100% stacked. For this example, you will focus on the Bar chart,
but users can easily switch over to the Column chart with the click of a button.

Let's look at setting up a bar chart:

1. From the Visualizations pane, select the Stacked bar chart. Move and
resize the visual to take up a quarter of the Report canvas.

2. From the Fields pane, drag Sales Territory Country from the Sales
Territory table to the Axis bucket.

3. Next, from the Fields pane, drag Profit from the Internet Sales table to
the Values bucket. This forms the base of the visual and visualizes which
countries make the most profit.

4. Extend this visual to break down each country's profit by age groups.
From the Fields pane, drag Age Breakdown from the Customer table to
the Legend bucket.

5. Optionally, in the Visualizations pane switch to the Format section and
toggle the Data Labels to On.

There are some situations where the Bar chart will better display
data, and the same thing can be said of the Column chart. The
biggest limitation for the Column chart would be the limited
space on the X axis where the category would go. So, if you have
a lot of data labels or if they are very long, you may find that
the Bar chart is the better option. An example where you might
choose the Column chart over the Bar chart is if your dataset
contains negative values. In a Bar chart, the negative values will
show on the left side while in a Column chart they will display
on the bottom. Users generally associate negative values with a
downward direction.

Chapter 5

[157]

Figure 5.23: Data labels can be turned on from the Format section of the Visualizations pane

In regard to the other two options, Clustered and 100% stacked, you can simply
select those visuals to experience the different presentations. You will notice the
data labels remain and add great value regardless of the visual selection.

Pie and donut charts
Both the Pie chart and Donut chart are meant to visualize a particular section
compared to the whole, rather than comparing individual values to each other. The
only difference between the two is that the Donut chart has a hole in the middle,
which could allow for some sort of label. Both of these visuals can be very effective
in allowing cross-highlighting, but if there are too many categories it can become
difficult to read and interpret.

Let's look at setting up a Donut chart:

1. Ensure no visuals are selected by clicking any blank area on the Report
canvas.

2. From the Visualizations pane, select the Donut chart. Move and resize it
to take up a quarter of the Report canvas, preferably above or below the Bar
chart.

Visualizing Data

[158]

3. From the Fields pane, drag Temperature Range from the Temperature table
to the Legend bucket.

4. From the Fields pane, drag Total Sales from the Internet Sales table to the
Values bucket.

Because there are only four values within the Temperature Range category, this
chart looks very clean and easy to understand. There is something, though, that
can be added that will make it even easier to read: detail labels. This option is very
similar to category labels in that you can display the data of each of the quadrants
without having to use the tooltips. One thing that is different though is that it is
already on, and all you need to do is decide how much detail to have displayed.
More values being present can cause even more clutter though. To access these
options, go to the Format section of the Visualizations pane, expand the Detail
labels option, and manipulate the Label style dropdown. For this example, choose
the All detail labels option and increase the font size if desired. As you can see in
Figure 5.24, you now have a very nice and easy way to understand the presented
data, as well as use it for cross-filtering and cross-highlighting:

Figure 5.24: Label style settings for the donut chart

Chapter 5

[159]

When creating pie and donut charts consider how filtering the data may affect the
readability of the chart. In addition to having too many slices that clutter the chart,
having slices that are too narrow to easily identify, or slices that are very similar in
size, can be detrimental to a consumer's ability to draw accurate conclusions from
the chart.

Treemap
A fantastic visual for displaying hierarchies is the Treemap visual. It accomplishes
this by nesting the data in rectangles, which are represented by color, and this is
commonly known as a "branch." If you add a category into the Details bucket of the
visual you will note smaller rectangles within the "branches" and these are known as
"leaves," hence the name Treemap. In order to maximize this visual, you will need to
do a little extra setup and bring in a new table, and create a new hierarchy. Let's go
through this process now:

Let's look at setting up a treemap:

You need to bring in the DimGeography table from the AdventureWorksDW Excel
workbook. Since you accomplished this during Chapter 3, Building the Data Model,
you should be able to see this source under the Recent Sources option on the Home
ribbon. If not, you can connect to this source by pointing to this location: Microsoft-
Power-BI-Start-Guide-Second-Edition-main\Data Sources\AdventureWorksDW.xlsx:

1. Once the Navigator appears, place a checkmark next to the DimGeography
table and click Load.

2. You will need to do a couple of quick fixes to this new table before you can
leverage it. Navigate to the Model view and delete the inactive relationship
between Sales Territory and DimGeography.

3. Next, rename the table to Geography and hide the
FrenchCountryRegionName and SpanishCountryRegionName fields.

4. Create a new hierarchy. Right-click on the EnglishCountryRegionName
column and select Create hierarchy from the dropdown. Rename the new
hierarchy Region Drilldown.

5. With the hierarchy selected, add StateProvinceName to the hierarchy by
changing the Select a column to add level… option in the Properties pane
to the StateProvinceName field.

Visualizing Data

[160]

6. Repeat the previous step to add the City field to the hierarchy. Click Apply
Level Changes.

Figure 5.25: Apply fields and order to the Region Drilldown hierarchy

Now that you have a new geographical hierarchy that goes all the way down to the
city level, you can see how this will display with the Treemap visual.

Let's look at setting up a Treemap:

1. Navigate back to the Report view. Ensure no visuals are selected by clicking
any blank area on the Report canvas.

2. From the Visualizations pane, select the Treemap. Move and resize this
visual so that it takes up a quarter of the remaining report canvas.

Chapter 5

[161]

3. From the Fields pane, drag Region Drilldown from the Geography table to
the Group bucket.

4. Next, from the Fields pane, drag Total Sales from Internet Sales to the
Values bucket.

5. Last, from the Fields pane, drag Year from the Date (Order) table to the
Details bucket.

The size of each of the rectangles is determined by the value being measured, which
in this case is Total Sales. The "leaves" in this visual are portrayed by the Year
category while the Region Drilldown creates the "branches." Because you are using
a hierarchy, you have full access to the Drilldown capabilities shown earlier. You
should also now be able to tell that the Treemap visual arranges the rectangles by
size from top left (largest) to bottom right (smallest).

Figure 5.26: The treemap visual with group and detail levels displayed

Look to treemaps as an alternative when bar and column charts become too
cluttered by the number of categories because it still allows the consumer to
compare the size of one category to another.

Visualizing Data

[162]

Scatter chart
The last visual used for categorical data is the Scatter chart, sometimes referred to as
the Bubble chart. This visual allows you to show the relationships between two or
three numerical values. You are given the opportunity to place values on the X and
Y axes, but what is different about this visual is the ability to add a third value for
the size, and this is where the name Bubble chart comes from. There is also a very
unique option available within the Fields section to really bring this data to life, and
it is called the Play Axis. Let's create the Scatter chart first, and then discuss the Play
Axis.

Let's look at setting up a Scatter chart:

1. Ensure no visuals are selected by clicking any blank area on the Report
canvas.

2. In the Visualizations pane, select the Scatter chart. Move and resize it to take
up the remainder of the Report canvas.

3. From the Fields pane, drag Total Sales from the Internet Sales table to the X
Axis bucket.

4. From the Fields pane, drag Profit from the Internet Sales table to the Y Axis.
5. From the Fields pane, drag Order Quantity from the Internet Sales table to

the Size bucket.
6. Finally, from the Fields pane, drag EnglishCountryRegionName from the

Geography table to the Legend bucket. The visual should look similar to
Figure 5.27.

Chapter 5

[163]

Figure 5.27: Scatter plot configured to show sales, profit, and order quantity by
EnglishCountryRegionName

Now, the last part that you will configure on this visual will be the Play Axis, which
is unique to the Scatter chart. By adding a component of time, you can bring a little
animation to this visual. For our example, add the English Month Name field from
the Date (Orders) table to the Play Axis bucket, and you will see a play button
appear along with the 12 months. By pressing the play button, you will now be
able to watch the bubbles move to display their values at specific moments in time.

Visualizing Data

[164]

The Scatter chart uses a sampling algorithm when plotting larger sets of data to
improve performance. The standard method used plots every 10th data point. In
general, that sampling method is adequate. However, as datasets grow larger,
high-density clusters of data can be oversampled leaving some sparse data points
to be completely omitted from the chart. To solve this issue a setting is available in
the Format section under the General options to enable a High Density Sampling
algorithm that takes proximity to nearby data points into account, thereby ensuring
the data points outside the high-density cluster are represented on the chart rather
than being missed simply because they were not the 1 in 10 selected for display.
This setting prioritizes an accurate distribution over accurate density on the Scatter
chart. When showing items with no data, adding a ratio line, or using the Play Axis,
the high-density setting will be ignored and the scatter chart will revert back to the
standard sampling described at the beginning of this section.

Visualizing trend data
The term trend data refers to displaying and comparing the change in value over
time. Power BI provides many options in this category, each with its own focus. The
idea for each of the visuals is to draw attention to the total value across a length of
time. Create a new report page called Trend Data, and dive right in to see what the
differences are between the following options:

• Line and Area charts
• Combo charts
• Ribbon charts
• Waterfall charts
• Funnel charts

To begin, let's explore the line and area charts. These are the most commonly
used charts for visualizing trend data, and the ones that the visualizations report
consumers are likely most familiar with already.

Line and Area charts
The Line chart is the most basic of the options when it comes to analyzing data
over time. The Area chart and Stacked area chart are based on the Line chart; the
difference is that the area between the axes and the line is filled in with colors to
show volume. Because of this, the focus will be on the line chart for the next example.

Chapter 5

[165]

Let's look at setting up a Line chart:

1. From the Visualizations pane, select the Line chart. Move it to take up a
quarter of the Report canvas.

2. From the Fields pane, drag the Date field from the Date (Order) table to the
Axis bucket.

3. Add two measures to compare over time. From the Fields pane, drag Total
Sales and Prior Year Sales from the Internet Sales table to the Values
bucket.

4. Finally, click Expand all down one level in the hierarchy two times to
display the quarter and month as seen in Figure 5.28.

Figure 5.28: Sales and Prior Year Sales line chart with an indicator on how to drill down
to quarter, month, and day levels

With this Line chart, you can clearly see there was a large growth in sales between
2007 and 2008. Visuals that focus on trend data can very easily illustrate any outliers,
which can allow users to further investigate the cause for the seen trend. This visual
can also benefit from some of the formatting options such as data labels.

Visualizing Data

[166]

Combo charts
As the name states, Combo chart combine the Line chart and Column chart together
in one visual. Users can choose to have either the Stacked column format or the
Clustered column format. By combining these two visuals together, you can make
a very quick comparison of the data. The main benefit of this type of chart is that
you can have one or two Y axes. Two measures can either share the same Y axis, like
Total Sales and Profit, which are both numeric values, or, they could be based on
completely different values, like Order Quantity and Profit, which are numeric and
percentage, respectively. Let's use two different axes for this example:

1. Ensure no visuals are selected by clicking any blank area on the Report
canvas.

2. From the Visualizations pane, select the Line and stacked column chart
visual. Resize it to take up a quarter of the Report canvas.

3. From the Fields pane, drag Date from the Date (Order) table to the Shared
Axis bucket.

4. From the Fields pane, drag Order Quantity from the Internet Sales table to
the Column Values bucket.

5. Finally, from the Fields pane, drag Profit from the Internet Sales table to the
Line Values bucket.

In this example, you can see that there are two Y axes; the left one relates to the
Order Quantity while the right one corresponds with the Profit. Expand the
hierarchy one level; this will give more data points to see the trending between the
two measures, as seen in Figure 5.29:

Chapter 5

[167]

Figure 5.29: Combo chart with columns representing order quantity and a line representing profit

From this visual, it's fairly easy to validate that when more items are sold more profit
is made. This, like many other visuals, can also benefit from data labels.

Ribbon chart
The Ribbon chart is no different than the other visuals explored in this section; it
is good at viewing data over time. What makes ribbon charts effective though is
their ability at showing rank change; the highest range or value is always displayed
on the top for each of the time periods. The chart also does have a unique visual
flowing appeal to it that is different than the other visuals.

Visualizing Data

[168]

Let's look at setting up a Ribbon chart:

1. Ensure no visuals are selected by clicking any blank area on the Report
canvas.

2. From the Visualizations pane, select the Ribbon chart visual. Resize it to
take up a quarter of the Report canvas.

3. From the Fields pane, drag Date from the Date (Order) table to the Axis
bucket.

4. Next, from the Fields pane, drag Total Sales from the Internet Sales table
to the Values bucket. At this point, you will see that it looks like a Column
chart.

5. Upon adding a category to the Legend bucket, the visual will display a
flowing ribbon. For this exercise, drag EnglishCountryRegionName from
the Geography table to the Legend bucket.

The first thing you may notice is the lighter areas between time periods; this is really
one of the best parts of the Ribbon chart. This area shows the value for the category
for the previous period and the upcoming one. Also, the tooltip gives each value a
rank and shows any increases and decreases. This, like many other visuals, also gets
a nice visibility improvement by adding data labels, as seen in Figure 5.30.

Figure 5.30: Ribbon chart showing total sales by country and year

Chapter 5

[169]

The dynamic ranking feature of the ribbon visualization makes it unique but does
come at the cost of making it more difficult to discern size in relation to prior periods
or size in relation to other categories within the same period.

Waterfall chart
This next visual, the Waterfall chart, is very helpful in understanding the changes
that occur from an initial value. It displays a running total in relation to values being
added or subtracted. By populating a field in the Breakdown option of the visual,
you can see if it has had a positive or negative impact from value to value.

Let's look at setting up a Waterfall chart:

1. Ensure no visuals are selected by clicking any blank area on the Report
canvas.

2. From the Visualizations pane, select the Waterfall chart. The current report
page should have a quarter of the area still available. Use half of this for the
Waterfall chart.

3. From the Fields pane, drag Date from the Date (Order) table to the
Category bucket.

4. Next, from the Fields pane, drag Profit from the Internet Sales table to the
Values bucket. This will show how much each year has contributed to the
total profit.

Finally, from the Fields pane, drag Age Breakdown from the Customer table to
the Breakdown bucket.

Now, you can see the strength of the Waterfall chart, and you can see how much
contribution each age group provided between years. By default, the visual uses
the green color to indicate positive changes and red to indicate negative changes,
but this can be changed from the Format section if you are so inclined.

Visualizing Data

[170]

Depending on how many values are within your breakdown category, enabling data
labels can be useful in this visual, as seen in Figure 5.31:

Figure 5.31: Waterfall chart showing profit by age breakdown and year

The Waterfall chart is particularly useful when searching for how much a particular
category (represented by the breakdown field) contributes to the overall gain/loss
between two periods.

Funnel chart
The Funnel chart allows users to see the percentage difference between values.
Normally, the highest value is at the top and the lowest is at the bottom, which
gives the look of a funnel. Each stage of the funnel will tell the percentage difference
between itself and the previous stage, as well as compared to the highest stage.
With this type of design, it makes sense that the Funnel chart is very effective when
visualizing a linear process with at least three or four stages. The sample dataset
does not have a process with multiple stages, but there is data that will still create
something that gives value.

Chapter 5

[171]

Let's look at setting up a Funnel chart:

1. Ensure no visuals are selected by clicking any blank area on the Report
canvas.

2. From the Visualizations pane, select the Funnel chart. It should fill in the
final remaining space on the Report canvas.

3. From the Fields pane, drag CountryRegionCode from the Geography table
to the Group bucket.

4. Finally, from the Fields pane, drag Profit from the Internet Sales table to the
Values bucket.

The way this visual is set up allows you to very easily identify which countries make
the most profit and which make the least, but this is something that can be achieved
with many other visuals. What gives the Funnel chart an edge is when you hover
over one of the sections within the funnel and note the items that appear within the
tooltip. You will see, when hovering over the section for FR, that the tooltip lets you
know how it compares to the section directly above it, as well as how it compares to
the highest section, which is represented by the US.

Figure 5.32: Funnel chart showing profit by country and as a percent of the largest profit winner

There is no shortage of ways to visualize trend data in Power BI. Next, let's look at
calling out important data points using KPIs.

Visualizing Data

[172]

Visualizing KPI data
KPIs, or Key Performance Indicators, are measurable values that demonstrate
how well a company is achieving a certain objective. Power BI has several options
to measure the progress being made towards a goal for operational processes.
The strength of a KPI visual lies in its simplicity. It displays a single value and its
progress toward a specific goal.

Create a new report page called KPI Data and take a closer look at the gauge and KPI
visuals.

Gauge
The Gauge visual displays a single value within a circular arc and its progress
toward a specified goal or target value. The Target value is represented by a line
within the arc. With the current dataset there is not a measure that can be used to
illustrate an accurate business goal, so one will have to be created. Before setting up
this visual, a new calculated measure will need to be created.

The gauge will be using the Total Sales field as the Value field. The target will be
10% more than the previous year's total sales, so a DAX calculation is needed to
create this measure:

1. In the Fields pane, right-click the Internet Sales table and select the New
Measure option. This brings the focus to the formula bar.

2. Name the measure Sales Target, and use the following DAX formula to get
our target:

Sales Target = [Prior Year Sales] * 1.1

Now that all the necessary measures have been created, let's set up the Gauge visual
and create the first KPI:

1. From the Visualizations pane, select the Gauge. Move and resize it as you
see fit.

2. From the Fields pane, drag Total Sales from the Internet Sales table to the
Values bucket.

3. From the Fields pane, drag Sales Target from the Internet Sales table to
the Target Values bucket.

Chapter 5

[173]

Using a slicer visual alongside this KPI will be helpful with this dataset. Add the
slicer visual using the Year field from the Date (Order) table for the Value. If you
choose the year 2008, you will see that the value changes along with the target, as
seen in Figure 5.33. With this dataset, the year 2008 has the most recent transactions,
and because of this visual, you can see that the goal has still not been met. If you
look at any of the other previous years, you can validate that the total sales surpass
the target every year.

Figure 5.33: Gauge showing sales vs. target sales for the year 2008

The Gauge does not require a target, maximum, or minimum field but they each
help create a more user-friendly visual. The minimum and maximum values can be
set manually on the gauge axis formatting options for the visual if a dynamic range
is not required.

Visualizing Data

[174]

KPI
Where the Gauge visual uses the circular arc to show the current progress, the KPI
visual takes a more explicit approach and just shows the value in plain text, along
with the goal. The only real visual elements that are in play with this visual occur
when the indicator value is lower than the goal and the text is shown in red, and
when it has surpassed the goal and the text is in green. This is one of the more direct
visuals and perfectly exemplifies what users look for in a KPI.

Let's look at setting up a KPI:

1. Ensure no other visuals are selected by clicking any blank area on the Report
canvas.

2. From the Visualizations pane, select the KPI. Move and resize it as you see
fit.

3. From the Fields pane, drag Total Sales from Internet Sales to the Indicator
bucket.

4. Next, from the Fields pane, drag Prior Year Sales from the Internet Sales
table to the Target Goals bucket.

5. Finally, from the Fields pane, drag Year from the Date (Order) table to the
Trend Axis.

If, after following the preceding steps, the visual displays a value of Blank for the
indicator, do not worry. This is because it is trying to show the Total Sales for the
year 2010, the most recent value in the dataset. Unfortunately, there are no sales for
2009 or 2010, so to have this visual display correctly simply choose any other year
from the slicer that was added in the previous section. Once you have accomplished
this, you will now be able to view the KPI visual, and it should look like Figure 5.34.

Chapter 5

[175]

Figure 5.34: KPI showing sales vs. the prior year sales for 2008

Be sure to look at the formatting options for the KPI visual to set the appropriate
color coding for the indicator. The default settings have higher values as "good" but
this is not always the case. Imagine a scenario where the KPI is visualizing shipping
delays, in that case a lower number would be better and the KPI can be configured
as such.

Visualizing Data

[176]

Visualizing data using cards
The ways for Power BI to get detailed data into the hands of a user are vast. Tables,
matrices, bar chats, and combo charts all provide large quantities of data to users in a
single visual. Sometimes, like a KPI, users just need to see a number. When the trend
or target components of a KPI are not required, turn to the Card visualization. The
Card is the most basic of visuals displaying only a single value. If slightly more detail
is necessary, but required at a group level, look to the Multi-row card.

Before moving on, create a new report page called Card Data.

Card
The Card is useful for highlighting a series of related metrics in a dashboard,
displaying the most recent or oldest date in a dataset, and calling out important
numbers for a detailed report. Some formatting options are available to change the
font size or color, but at its core, the card visual just displays a single value.

Let's look at setting up a Card:

1. Ensure no other visuals are selected by clicking any blank area on the
Report canvas.

2. From the Visualizations pane, select the Card. Move and resize it as you
see fit.

3. From the Fields pane, drag Sales Amount from the Internet Sales table to
the Fields bucket.

4. Explore the Format section to change the category text, title text, or switch
the display units from millions to thousands.

Chapter 5

[177]

Figure 5.35: Card showing the aggregate total sales amount

It is important to ensure the report provides context for what is being displayed on
the Card because it lacks categories. Consider using slicers on report pages with
cards rather than report- or page-level filters to ensure users are fully aware of the
filters being applied to the card.

Multi-row card
The Multi-row card allows for slightly more data to be displayed than the card. It
accepts multiple fields and automatically groups all non-summarized fields. For
instance, adding the Sales Territory Country and Total Sales would result in one
row per country. Adding the Color field from the Product table would automatically
group the Total Sales by both Sales Territory Country and Color. This behavior
sounds similar to a Table or Matrix, but the Multi-row card does not display data in
a tabular format, instead it creates separate sections in the visual for each group.

Visualizing Data

[178]

Let's look at setting up a Multi-row card:

1. Ensure no other visuals are selected by clicking any blank area on the Report
canvas.

2. From the Visualizations pane, select the Multi-row card. Move and resize it
as you see fit.

3. From the Fields pane, add the following fields to the Fields bucket:
• Sales Territory Country from the Sales Territory table
• Total Sales from the Internet Sales table
• Profit from the Internet Sales table
• Profit Margin from the Internet Sales table

Figure 5.36: Multi-row card showing sales and profit measures by country

While the Multi-row card can display more fields compared to the card, it comes at
the cost of customization. There is little to no control over how the data is displayed
outside some basic font size and color options.

Chapter 5

[179]

Visualizing geographical data
One of the most exciting ways to visualize data in Power BI is through the various
maps. All the maps serve the same purpose, to illustrate data in relation to locations
around the world, but there are some small differences between each of them.
All of the maps, except the Shape map, have the option to visualize latitude and
longitude coordinates, which will be the best way to ensure the appropriate location
is being displayed. The reason for this is because the information provided to the
visual will be sent to Bing Maps to verify the positioning on the map. If you do not
provide enough detail, then Bing may not return the desired results. For example,
if you were to provide the map visual with a field that contains only the city name,
that could result in some confusion because there may be multiple cities in the
United States with that name. In these scenarios, you will either want to supply
some sort of geo-hierarchy to give a better definition, or create new columns with
more detailed information. Power BI also has a built-in feature when dealing with
geographic data that allows users to help identify the type of data that is being
provided: this is called the data category. Let's go ahead and take advantage of
this for our dataset to make the map visuals more accurate:

1. From the Fields pane, expand the Geography table. Select the City field by
clicking the name of the field rather than the checkbox to its left.

2. On the Column Tools ribbon change the Data category to City. Once here,
you will see the Data category option.

Figure 5.37: Change the data category for a field on the Column tools tab of the ribbon while
on the Report view

3. Repeat the steps above for the StateProvinceName field, selecting the State
or Province data category.

4. Repeat the steps above for the EnglishCountryRegionName, selecting the
Country data category.

Visualizing Data

[180]

Now that you have defined the geographical data for Power BI, you can proceed
with using the various map visuals. One thing of note is that using any of these
visuals does require internet access because data will be sent to Bing Maps or ESRI
depending on the visual chosen.

Before you begin, create a new report page called Geographical Data.

Map
The first visual to illustrate geographical data is simply called the map visual. This
visual is also referred to as the bubble map because it plots the points of data with
circles that can be set to change in size based off a supplied measure. With this
visual, if you have the latitude and longitude coordinates in your dataset, then
nothing needs to be sent to Bing Maps. Such detailed data is unavailable, so you
will need to supply the necessary information through the Location bucket, which
will be sent to Bing Maps.

Let's look at setting up a map:

1. From the Visualizations pane, select the Map visual. Move and resize it to
take up a quarter of the Report canvas.

2. To ensure there is no confusion about the locations to be mapped, use the
geo-hierarchy, which has been created within the Geography able. From the
Fields pane, drag the Region Drilldown from the Geography table to the
Location bucket. Six countries will be represented by a bubble.

3. Next, from the Fields pane, drag Total Sales from the Internet
Sales table to the Size bucket. This value will dictate the size of the bubbles
displayed for each city on the map. Larger bubbles indicate countries with
higher sales amounts.

4. Finally, from the Fields pane, drag Age Breakdown from the Customer table
to the Legend bucket. With this, the bubbles start to look like little pie charts,
as seen in Figure 5.38.

Chapter 5

[181]

Figure 5.38: A map showing sales by country by age breakdown

When using a geo-hierarchy with a map, enabling the Drill mode, which is signified
by the down arrow in the upper right, can make this visual even more enjoyable.
Remember this for any visual where you have a hierarchy selected; you should
explore the different views it gives you.

Filled map
Unlike the traditional map visual, which uses a bubble to indicate locations, the
Filled map visual uses shading to display the geographic data. So, the lighter an area
looks, the lower the representative value. For this visual, it is recommended to visit
the Format section and dictate the range of colors for the shading so it will appear
more apparent.

Visualizing Data

[182]

Let's look at setting up a Filled map:

1. Ensure no visuals are selected by clicking any blank area on the
Report canvas.

2. From the Visualizations pane, select the Filled map. Move and resize it
to take up a quarter of the Report canvas.

3. From the Fields pane, drag Region Drilldown from the Geography
table to the Location bucket.

4. From the Visualizations pane, switch to the Format section. Expand the
Data colors options. Click the conditional formatting button next to the color
selector.

Figure 5.39: Filled map highlighting each country in the Region Drilldown hierarchy

5. Change the Based on field setting to the Profit field from the Internet Sales
table.

6. Check the box next to the Diverging option. Click OK.

Chapter 5

[183]

Figure 5.40: Configuration to set colors on the filled map based on profit

The base layer on the filled map can be changed to a variety of themes including
road, dark, light, and aerial, which shows satellite imagery.

Shape map
Similar to the Filled map, the Shape map visual uses shading/saturation to show the
geographic data. One thing that does make the Shape map unique is that it allows
users to upload their own maps to be illustrated. In order to accomplish this, you
must have a JSON file that contains all the necessary information required by Power
BI. By default, the visual does offer some standard maps but currently does not
have an option to show the entire world.

Visualizing Data

[184]

Let's look at setting up a Shape map:

1. Ensure no visuals are selected by clicking any blank area on the Report
canvas.

2. From the Visualizations pane, select the Shape map. Move and resize it to
take up a quarter of the Report canvas.

3. From the Fields pane, drag StateProvinceName from the Geography
table to the Location bucket. Do not be alarmed if nothing appears initially,
you still need to tell Power BI which map to use.

4. From the Fields pane, drag Profit from the Internet Sales table to the Color
saturation bucket.

5. From the Format section of the Visualizations pane, expand the Shape
section where there will be a drop-down selection for the Map category. For
this example, select USA: states.

6. This is another example where taking control of what colors will be used for
the shading can be helpful. Apply the same Diverging setting from the Filled
map under the Data colors options.

In addition to simple geographical mapping, the Shape map provides the ultimate
flexibility allowing you to bring more detailed mapping, such as census tracts, to
Power BI.

ArcGIS Map
The ArcGIS Map visual is very different in that there is an option to pay for
additional features. Also, the location where you can make visual changes to the
map is different as well. Normally, you would access the Format section of the
Visualizations pane but for this map, you must hit the ellipsis in the upper-right
corner of the visual and choose the Edit option. You will be focused on a couple of
key areas, but there are a lot of options that are worth exploring.

Let's look at setting up an ArcGIS Map:

1. Ensure no visuals are selected by clicking any blank area on the Report
canvas.

2. From the Visualizations pane, select the ArcGIS Map. Move and resize it
to take up the final quarter of the report canvas.

Chapter 5

[185]

3. From the Fields pane, drag StateProvinceName from the Geography table to
the Location bucket.

4. From the Fields pane, drag Total Sales from the Internet Sales table to the
Color bucket.

Figure 5.41: ArcGIS map showing total sales by state

This visual is ready to go with the current configuration, but if you want to change
how things look you must take a new route that is unique to this visual. In the
upper right-hand corner, you will see an ellipsis; left-click this and choose the Edit
option highlighted in Figure 5.41. This brings up a display that looks very similar to
Focus Mode, but you will notice there are quite a few options at the top of the map
highlighted in Figure 5.42. The first area to visit to make a slight change will be the
Symbol style option. Here, you can control the level of transparency as well as the
color palette being used.

Visualizing Data

[186]

Select the drop-down menu for the Color ramp option and choose whatever
selection you find enjoyable.

Figure 5.42: Options menu in the ArcGIS map that provides vast customizations

This is the only change you will be making for this example, but you should take the
time and examine all the other options available to you. Remember, there are even
more options to choose from if you decided to subscribe and pay for this visual.

Azure maps
The newest member of the Power BI mapping family is the Azure maps visual.
Unlike some of the other options, this map requires latitude and longitude. It does
not accept generic locations like city or state, or even more specific locations like
ZIP code. The map style can be changed between several options including satellite,
hybrid, grayscale, and terrain. A powerful feature of this map is the ability to add
reference layers that can be uploaded in GeoJSON form. Other notable functionality
includes overlaying a bar chart on the map and displaying real-time traffic.

Due to the latitude and longitude data point requirement, there is no sample data
available in the lab, but a screenshot has been included for reference. In Figure 5.43
you will notice buckets for Latitude, Longitude, Legend (used for color coding
groups), Size, and Tooltips.

Chapter 5

[187]

Figure 5.43: Azure map showing population by location

All the maps described in this chapter are very similar, but each has a specific
functionality that does not exist in the others. The traditional map and Filled map
visuals are the most used, but you will need to decide when one might illustrate
your dataset better than the other.

Natural language
Not all data is as straight forward as showing the sales amount by month. Often,
when a report is being developed you may not know all the different visualizations
a user would like to see. While Power BI has great flexibility thanks to built-in cross-
filtering, drilldown, and the ability to see data behind a visual, it will never be able
to cover all possible reporting scenarios. One of the most powerful ways to enable
self-service functionality in Power BI is using the Q&A visual. The Q&A feature is
often described as a search engine for your data.

Visualizing Data

[188]

The Q&A visual allows users to simply ask a question in plain English and receive
an answer in the form of a pre-built visual. This is great for data exploration as well
thanks to search suggestions and autocomplete functionality. The suggestions are
only as good as the data model you have built. Without specific domain knowledge,
Power BI makes suggestions for additional terms people may search for. In the
case of the model in the examples, Power BI has suggested a few additional terms
that could be used in place of customer, which are client, consumer, user, or buyer.
Adding these as synonyms in the data model will provide added flexibility to users
searching for answers.

This visual is unique in that it does not have a Field section in the Visualizations
pane. All the setup is done in the visual itself on the Report canvas.

Let's look at setting up a Q&A visual:

1. Create a new report page called Q&A.
2. From the Visualizations pane, select Q&A. Move and resize it to take up

the left half of the canvas.
3. In the Ask a question about your data box, type the following query: total

sales. Notice the visual creates a card showing total sales of 29.36 M.
4. Continue typing the following in the Ask a question about your data box:

total sales by sales territory. Choose the suggested result, total sales
by sales territory sales territory country. The visual has now switched to
a Bar chart showing sales by country.

5. Continue typing the following in the Ask a question about your data box:
total sales by sales territory sales territory country and age
breakdown. The visual now shows a Clustured bar chart.

6. Complete the query as total sales by sales territory sales territory
country and age breakdown as stacked bar chart.

7. Finally, click the Turn this Q&A result into a standard visual button to the
right of the query box as indicated in Figure 5.44.

Chapter 5

[189]

Figure 5.44: Use the Turn this Q&A result into a standard visual button to keep the visual built
by the Q&A result

Visualizing Data

[190]

Let's create one additional Q&A visual to see how visual interactions work:

1. Ensure no other visuals are selected by clicking any blank area on the
Report canvas.

2. From the Visualizations pane, select Q&A. Move and resize it to take up
the right half of the canvas.

3. In the Ask a question about your data box, type the following query: profit
by date (order) month as column chart.

4. In the column chart, click the February column. Notice the change in the
Stacked bar chart.

5. In the Column chart, click the February column again to reset the selection.
6. In the Stacked bar chart, click United States Age 45-54. Notice the change in

the column chart inside the Q&A visual.

Figure 5.45: Q&A visual being filtered by a standard visual

As you have seen, the Q&A visual is not only capable of aiding in the creation of
new visuals, it is also a powerful tool for users to explore the data, create their own
custom visuals, and interact with other visuals. The ability to interact with other
visuals provides a great amount of flexibility to any report.

Chapter 5

[191]

Visuals from analytics
Up to this point all the visuals have been focused on visualizing the data in the
data model. There are a couple of visuals that go one step further and provide
information about the data that are not easily gained by a human looking at a report.
These visuals leverage machine learning to provide actionable insight and allow the
use of additional programming languages in Power BI.

Two of the most common programming languages in use today are R and Python.
Power BI offers a built-in visual for each of these languages with an easy interface
for bridging the gap between the Power BI data model and the programming
language surface. Each of these requires a local installation for Power BI to use for
processing. Simply add the fields you would like to use in your code to the Fields
bucket for the visual and reference them by name in your code. A few lines of
sample code are generated to show the proper way to reference the fields as well.
Adding the R or Python visual unlocks dozens of additional visualization possibilities
including boxplots, stem plots, 3D scatterplots, and contour plots.

The final visualization is the key influencers visual. If you have ever wanted to
understand what impact different fields have on one another this visual will help.
Define the field to be analyzed and then simply add all the fields you wish to analyze
as influencers. The result will show how each field influenced the metric being
analyzed, a rank showing which had the largest influence, and to what extent the
field was influenced. For instance, you can determine what influence, if any, the
month of the year, the latitude, the elevation, and the number of days of sun had on
the temperature in a particular city ranked and quantified. Visual interactions are
maintained as well, meaning you could filter the key influencers visualization with
data from a slicer or bar chart and as the user changes the slicer to selects bars in the
chart, the key influencers would reevaluate based on the new filtered dataset.

These visuals provide a great deal of additional value to a Power BI report if the
built-in visualizations do not provide the insights required. The key influencers
visual will also provide valuable insight into the impact relationships between
data points are having.

Power BI custom visuals
Throughout this chapter, you have seen many different visuals and how they work
with specific types of data. Although there are many options readily available with
Power BI, you have access to 100+ more visuals from Microsoft AppSource right
at your fingertips. Users can either navigate to AppSource via any web browser, or
while inside of Power BI Desktop you can select the From AppSource option in the
Home ribbon's More Visuals menu.

Visualizing Data

[192]

Once you select this option, a menu will appear where you can simply search the
entire collection of custom visuals available. Once you have found a visual that
you would like to use, just click the Add button shown in yellow. Users can also
download the visualization file, which can be imported into Power BI by using the
From my files option, which is also in the Home ribbon's More Visuals menu. It is
important to understand that when you select a custom visual, it saves as part of
the Power BI report file and doesn't remain inside of the application. So, if you just
downloaded a custom visual and then closed down Power BI, when you restart
the application you will not see that custom visual unless you open the report you
saved the custom visual to. This is a fantastic feature, and it only continues to grow
so it is worthwhile to check out AppSource.

Data visualization tips and tricks
You have created six different report pages filled with different visuals and
investigated different configuration options for each of them. That being said,
you have barely scratched the surface of all the features that are available to you,
and with the very quick update cycle Power BI has, that list of features will keep
growing. This final section will explore a couple of features that are not exclusive
to just one visual, but can really help out when designing a report. It is highly
recommended to watch the monthly videos that the Power BI team produces
alongside the actual product update. This way, you can know exactly what is
new and how to use it.

Changing visuals
Throughout this chapter the workflow has been the same: add a blank visual then
add fields. Often this will work in a real-world development environment as well.
However, there are times when you will not know what the best visual is for your
data. It is not uncommon to create a bar chart only to realize you need to use a date
that would be better served as a column chart. Maybe the requirements change, and
the table needs to have an additional category added to the row groups causing the
visual to switch to a matrix. It is entirely possible to rebuild the visual, however, the
more useful option is to simply change an existing visual. To change between visuals
simply select an existing visual on the Report canvas and select the desired visual
from the Visualizations pane.

Be sure to note that when changing between visualizations the field buckets are often
different, which may cause some fields to be dropped from the visual. For instance,
switching from a Column chart to a Treemap generally works well. The axis on the
Column chart becomes the group on the treemap.

Chapter 5

[193]

However, switching to a gauge will cause Power BI to pick a single field for the
value and all other fields will be dropped. Power BI does maintain the metadata
from your visual choices and as long as no other major changes have been made
you can often switch between visuals and your prior settings will be restored.
The prior visual metadata is cleared when Power BI Desktop is closed.

Formatting visuals
Many references have been made in this chapter to conditional formatting and
visual formatting. These options can help enhance the look of a report and help
users gain an understanding of the data more quickly by drawing their eye
to specific elements or making certain key information stand out. It is highly
recommended to explore the Format section of the Visualizations pane for each of
the visuals created in this chapter to see the options that are available. Some options,
like the title text, background, and visual header toggle, are nearly universal. In
general, visuals from the same family will share the same or very similar options.
For instance, a table and matrix will both have options for formatting the headers,
values, and grid lines, while the trend charts will have options for axis scales, data
labels, and plot surface. It is often useful to work on formatting a single visual to the
desired look then use the Format painter to apply the same settings to other visuals.

Figure 5.46: Format painter is found on the Home tab of the ribbon

Not all options will transfer (for instance, no grid lines on a pie chart) but the overlap
will transfer even to visuals of a completely visualization different type.

Visualizing Data

[194]

The Analytics section
For every visual, you worked with the Fields section and the Format section of the
Visualizations pane, but there is an option you may have noticed that is called the
Analytics section. This option is available for most visuals, but some of the options
will not appear; for our example look at the line chart example created earlier in
this chapter. Once you have that visual selected, you can navigate to the Analytics
section and see that you are presented with up to seven different lines that can
be added to the visual. All you must do is decide which one to be displayed and
turn it on. For this visual, add an Average Line by expanding that section and
selecting the Add option. Once the line has been added, you can change the color,
name, transparency, style, and position from this same area, as seen in Figure 5.47.
Users can add as many of these lines as they so choose, but remember, more is not
necessarily better.

Figure 5.47: Reference lines being added from the Analytics section of the Visualizations pane

Chapter 5

[195]

Additionally, if the visualization is based on a time data source, a forecast option
will appear in the Analytics section. Specify the necessary input information such as
forecast length and confidence interval and a forecast line will be added to the visual.

The Top N filter
At the very beginning of this chapter, there was a brief explanation about the Filters
pane and how filters can be applied to different scopes. There are a couple of choices
available to users for the filter fields, but the focus here will be on the Top N option.
Even though it is called the Top N filter, this option allows a filter that will show
either the top or bottom number of values. For example, if you look at the Ribbon
chart created earlier in this chapter, you can see that there are six countries that
appear in the visual. With this filter, you can set it so that it only displays the top
four countries based off a chosen measure. So, in this situation, you could have that
measure be Total Sales, which is what the visual is showing, or really anything you
want. Let's go ahead and click the dropdown next to the EnglishCountryRegion
field in Visual level filters. If Top N isn't showing by default in the Filter type
section, select it from the dropdown. For the Show items section, leave the value of
Top and manually input the number 4, as shown in Figure 5.48. The last thing that
needs to be done is to decide what measure will be used to determine the top four
countries; keep things simple and drag in the Total Sales measure, and click Apply
filter. The most important thing to remember is that you can use any measure you
want for this filter.

Figure 5.48: Ribbon chart filtered to the top 4 countries by total sales

The Top N option can also be changed to advanced filtering, which allows for string
search, blank, include/exclude, and range filtering.

Visualizing Data

[196]

Show value as
Earlier in this chapter, you went through an example to take advantage of
conditional formatting. This option can be found by clicking the downward arrow
next to a field that is being used in a visual. Within this area is where you will find
another option that is labeled Show value as. This option will only be available for
numeric data types and allows values to be displayed as a percentage of the grand
total. The best way to take advantage of this is to place an identical column side
by side and then use this option to display one of them as a percentage. For our
example, revisit the matrix visual you created for the Tabular data section. Locate
the Profit measure in the Fields pane and drag it into the Values bucket for the
visual, placing it directly after the Profit measure that is already in place, referencing
Figure 5.49. The visual looks a little odd since there is a duplicated column, but now
change the new field to show a percentage. Within the dropdown for the second
representation of Profit, choose the Show value as option and select Percent of
grand total.

Figure 5.49: Change the value displayed from dollars to a percent of grand total

Chapter 5

[197]

The matrix was already a great visual to quickly see a lot of metric information
about the sales territory regions, but now you have a firm understanding of what
percentage each country is contributing to the grand total.

Summary
In this chapter, the focus was on how to configure visuals and what data they
best illustrate. You also saw a couple of the most common formatting options that
are used with these visuals. In the next chapter, you will look into the concept of
digital storytelling. Power BI has a strong set of options that can be leveraged to
allow users to experience and navigate through the data in an adventurous and
exploratory manner.

[199]

6
Digital Storytelling

with Power BI
In the previous chapter, you learned how to explore many of the readily available
visuals within Power BI and saw how they can showcase your data. With the
assistance of cross-highlighting and cross-filtering, you can also make the visuals
work with each other. But there is so much more than just simple drag-and-drop
reporting within Power BI. Power BI has several useful storytelling features.
Alongside all of the different visuals, Power BI has a set of features that can tie
together not only individual charts and graphs, but that can also allow users to
navigate through multiple pages to discover exactly the level of detail they want
from the data. Using these features, you can weave together the data in a way
that allows interactivity far beyond what has already been seen. This allows users
to take control of how they will view your Power BI report. If they just want to
take a quick glance at a summary view of the data, they can; but if they wish to
dive deeper, you can offer multiple paths to take. This chapter will investigate
the following digital storytelling features:

• Configuring drill through
• Capturing report views with bookmarks
• Combining object visibility with bookmarks
• Report pages as tooltips

Digital Storytelling with Power BI

[200]

When using these features, there are many different approaches that can be taken.
You will be looking at them in their most basic forms, but they can flourish when
you use your imagination. At the time of this book's publication, the idea of digital
storytelling has become extremely popular, which will more than likely foster even
more features for the future of Power BI, so keep an eye out!

Possibly the most fundamental method for empowering digital storytelling is
providing report consumers with the ability to tie multiple report pages to the same
context; in Power BI, this is accomplished by using drill through.

Configuring drill through
In Chapter 5, Visualizing Data, you saw the power of filtering to allow a single visual
to provide many different views of the data. For instance, a Bar chart showing all
sales could also show sales by year if cross-filtered by a date Slicer. You also saw
how the filter pane could be applied to visuals on a single page or across the entire
report. Up to this point, those were the only two options available. The Drill through
feature allows users to navigate from one report visual to another report page while
maintaining the filter context of the visual. A common example of the use of Drill
through is going from a summary to a detail page. A summary page may contain
several visualizations for sales data all aggregated at the country level. One of those
could be a Pie chart showing total sales broken down by country. While this can be
useful, many users will want access to more detailed information, such as all the
sales that happened in a particular country. A Drill through filter will allow users
to right-click on a slice of the Pie chart, possibly representing the United States,
and drill through to a detail report showing a table of sales that are now filtered to
the United States. This allows users to quickly move from summary to detail and
back to summary without ever needing to open the Filters pane. With the right
configuration, Drill through is a powerful data exploration tool.

For this chapter, you will be using the completed Power BI file
from Chapter 5, Visualizing Data. If you have not completed this
on your own, you can open a completed version, located at
Microsoft-Power-BI-Start-Guide-Second-Edition-main\
Completed Examples\Chapter 5 - Visualizing Data.pbix. It
is recommended that, upon opening this file, you immediately use
the Save As option and name the report Chapter 6 - Digital
Storytelling with Power BI. By doing this, you can preserve
your work from chapter to chapter.

Chapter 6

[201]

Drill through filters are applied at the page level only and are configured in the
Fields section of the Visualizations pane; they cannot be applied at the visualization
or report level. The Drill through section has three options to configure:

• Cross-report: Drill through to another report in the same Power BI
workspace or app when deployed to the Power BI service.

• Keep all filters: When enabled, all filter context from the source visual in
addition to the fields listed in the field bucket will be applied. When disabled,
only fields listed in the Drill through field bucket will be applied as filters.

• Add drill-through fields here: Fields added to this bucket will automatically
be enabled for drill through any time they are present in a visualization on
any other page within the same report.

Figure 6.1: Drill through settings on the Visualizations pane

Digital Storytelling with Power BI

[202]

Let's explore an example by copying some of the visuals created previously, in
Chapter 5, Visualizing Data, and moving them into new pages, leveraging the Drill
through filter option.

Let's look at setting up the example. Note that the Cross-report and Keep all filters
options should be set to Off and On respectively, as shown in Figure 6.1, then take
the following steps:

1. Create two new report pages: the first one should be called Summary and
the second Drill Through.

2. Navigate to the Summary report page and add a Stacked column chart
visual. Move and resize the visual to take up the right half of the Report
canvas.

3. From the Fields pane, drag Profit from the Internet Sales table to the
Values bucket.

4. From the Fields pane, drag Region Drilldown from the Geography table to
the Axis bucket.

5. From the Fields pane, drag Year from the Date (Order) table to the Legend
bucket:

Figure 6.2: Bar chart displaying profit by country and year

Chapter 6

[203]

6. Next, navigate to the Drill Through page. Add a Table visual. Move and
resize the visual to take up the left third of the Report page, but leave a small
amount of space above the visual, approximately 1/16 the height of the
report page.

7. From the Fields pane, drag the following fields to the Values bucket:
• StateProvinceName from the Geography table
• City from the Geography table
• Year from the Date (Order) table
• Profit from the Internet Sales table

8. Next, add a Map visual to take up the right two-thirds of the Report page.
9. From the Fields pane, drag City from the Geography table to the Location

bucket.
10. From the Fields pane, drag Profit from the Internet Sales table to the Size

bucket.
11. Finally, populate the Drill through fields by dragging

EnglishCountryRegionName from the Geography table to the Drill through
fields bucket:

Figure 6.3: Map with country on the drill through fields enabling the back button

When placing a field into the Drill through bucket, you will notice that a backward
arrow image is automatically added to the page in the upper left-hand corner. This is
simply an image that has been set with an action to go back to the previous page. By
selecting the image, you will find that there are quite a few familiar format settings
available in the Format section.

Digital Storytelling with Power BI

[204]

One of the more common settings to change is the Line color option under Icon,
which will allow the selection of a color to make the back arrow more visible:

Figure 6.4: Back arrow with line color set to black

Chapter 6

[205]

Everything is set for this example to demonstrate how Drill through works. Proceed
by taking the following steps:

1. Navigate to the Summary page. Right-click the 2008 section for United
States. There is now an option called Drill through. Hovering the mouse
over this new option will present a list of available drill through reports. In
this scenario, only one option exists. It is important to note that you can have
as many drill through reports as you desire. Click the Drill Through option:

Figure 6.5: Right-click menu showing the reports available for drill through

Digital Storytelling with Power BI

[206]

2. Upon left-clicking the Drill Through option, you will be taken to that page.
Notice both visuals have been filtered by the value of United States, and
because the Keep all filters option is turned on, they are also filtered to the
context of only 2008. Had the Keep all filters option been turned off, the
visuals would be displaying only the United States, but all years:

Figure 6.6: United States filter applied after performing drill through from the bar chart on the
Summary page

As you can see, using drill through in this scenario allows you to dive deeper into
sales records for a specific country, in a specific year. If you were to navigate back
to the Summary page (using the page navigation or the back button in the top-left
corner of the canvas) and make a different selection, those new filters would take
effect on these two visuals. Thus, you can see that now you have two report pages
that interact with each other. As more and more pages are added to the report, users
will always have the option to drill through to this report with whatever filters they
have chosen provided the visual uses the EnglishCountryRegionName field.

Drill through provides users with an ad hoc path to data exploration allowing them
to choose when and where to go deeper. There will be times when a more curated
storytelling experience is required, and that is accomplished using bookmarks.

Capturing report views with bookmarks
Cross-filtering, cross-highlighting, and Drill through filters make a big impact on
how users consume the data in Power BI reports. Sometimes, though, you may want
to ensure that users see the data in a very specific way that will truly show its impact,
satisfy report requirements, or simply provide alternate views of the data.

Chapter 6

[207]

You can guide report consumers in a very interactive way using Bookmarks and
showing or hiding visualizations in the Selection pane. Using these options, you can
make better use of the available canvas on each report page and still make it feel as
if users have many choices as to how they will view the data.

The Bookmarks feature allows report creators to capture the view of a Report page.
Bookmarks will save the current state of all filters, slicers, in-focus items, sorting,
and spotlight visuals (more on that feature later in this section) on a page at the time
when the bookmark is created. This allows users to return to the captured state by
simply selecting the bookmark in question.

To begin working with bookmarks, navigate to the View ribbon and select
Bookmarks from the Show Panes section. You will see a new pane present itself
to the left of the Visualizations pane:

Figure 6.7: Showing the Bookmarks pane

Because you have not created any bookmarks, the only option available is Add. First,
let's bring in a couple more visuals to the Summary page:

1. First, copy an existing visual to the Summary page. Navigate to the Trend
Data report page. Select the Line chart, which shows Total Sales and Prior
Year Sales. Press Ctrl + C on the keyboard or click the Copy button from the
Home ribbon.

2. Navigate to the Summary page. Press Ctrl + V on the keyboard or click the
Paste button from the Home ribbon. Move and resize the visual as you see
fit, leaving a small amount of space to add a filter.

Digital Storytelling with Power BI

[208]

3. Next, add a Slicer to the Summary page using the Age Breakdown field
from the Customer table. Optionally, display the slicer as a series of buttons
by navigating to the Format Area for the slicer and changing the Orientation
property to Horizontal within the General properties section:

Figure 6.8: Summary page with line chart and slicer added

The slicer will filter both the Bar and Line chart without any additional work by
leveraging Power BI's cross-filtering functionality. While it's not required, setting
the filter to a series of buttons allows a consumer to more easily identify what filter
context has been applied to this page of the report.

With the visuals in place, you can start to create bookmarks. There are a couple of
different approaches that can be adopted. The first option you will look at is simply
filtering the data to a specific state and then selecting the Add option inside the
Bookmarks pane. Select the option of 35-44 from the slicer to filter the Summary
page. Creating a bookmark for this really isn't impactful because this is something
that users can do by themselves with a visual slicer, but you can use some of the
other features in combination with this to create a specialized view of the data—for
instance, the Spotlight option. Select the ellipsis in the upper right-hand corner of
the Stacked column chart visual and choose the Spotlight option, which will fade
all other visuals on the page. Spotlight is useful for drawing attention and focus to
a single visual while keeping the remainder of the report page visible so users can
gather context for the data.

Chapter 6

[209]

Now select the Add option inside of the Bookmarks pane and rename the bookmark
as Spotlight Column 35-44. To rename the bookmark, select the ellipsis to the right
of the newly created bookmark. You will see the Rename option, along with many
others, as shown in Figure 6.9:

Figure 6.9: Spotlight option on the bar chart visual in addition to the Add and Rename bookmark options

Below is a short description of how each of the options on the options menu affects
the bookmark:

• Update: Overwrite the bookmark settings with the current state of the page.
To update a bookmark, do not click the name of the bookmark as Power
BI will switch to that bookmark, resetting the state of the report. Set the
report to the desired state and only then click the ellipsis next to the desired
bookmark and select Update.

• Rename: Change the name of the bookmark.
• Delete: Remove a bookmark.
• Data: When enabled, the bookmark retains the current state of the Filters

pane and the selection of any visuals (slicer selection, visual highlighting, the
selection of a section on a bar chart, and so on).

• Display: When enabled, the bookmark retains visual properties, such as the
Spotlight feature and the visibility.

Digital Storytelling with Power BI

[210]

• Current page: When enabled, selecting a bookmark automatically takes the
user to the page where the bookmark was created and applies the data and
display settings according to the bookmark. When disabled, a bookmark will
only function when the user is already on the page from which the bookmark
was created. This option effectively disables a bookmark unless you are on
the page the bookmark references.

• All visuals: When selected, all visuals on the page, both visible and hidden,
are part of the bookmark.

• Selected visuals: When selected, only the visuals that are selected, whether
visible or hidden, when the bookmark is created or updated will be stored.

As you can see from these options, there are many different behaviors that can be
controlled with bookmarks.

Now let's look at how bookmarks can be used. Click any area in the Report canvas
or surrounding area where there are no visuals. This will deselect all visuals and the
bookmark. Switch the Slicer visual to 45-54 and once again use the Spotlight feature
on the Stacked column chart and create another bookmark called Spotlight Column
45-54. Add a third bookmark following the same steps but pointing to the 55+ option
within the Slicer. This one should be called Spotlight Column 55+. Users can now
open the Bookmark pane and choose to view whichever bookmark they would like
very easily.

An additional way to view bookmarks is in a slide show style. Just to the right of
the Add button is an option labeled View that will bring up some new icons at the
bottom of the Report page. A forward and back arrow allows you to move through
all the available bookmarks and tell a tailored story about the data. Also, while in
this mode, all of the visuals are still completely available to be interacted with. To
exit, simply choose the X icon next to the arrows at the bottom or the Exit option
within the Bookmarks pane. The order of bookmarks can be very important when
using the slide show view. The order can be changed by simply dragging and
dropping the bookmarks into the desired order:

Chapter 6

[211]

Figure 6.10: Options for exiting the bookmarks view

You can see many ways to use Bookmarks, but there are still more. Another fantastic
way to guide your audience to these tailored views of the data is by using images
to link to bookmarks. To get a better understanding of how to accomplish this, let's
look at the Selection pane.

Combining object visibility with
bookmarks
The Selection pane provides a list of all objects on the current page and allows you
to show or hide visuals. This is useful if a slicer or visual is needed for cross-filtering
but is not needed for analysis. It is also useful to reuse the same Report page for the
same data but using different visuals when you are pressed for space. The following
section will demonstrate how to maximize your use of space when visualizing data
in different ways.

Digital Storytelling with Power BI

[212]

Bookmarking alternate views of the same data
Some users may want to see sales by country as a Bar chart, and others may want to
see it as a Table. If there is not enough room for both visuals, the default answer may
be to create a new page. However, it can be cumbersome to recreate and maintain
the same exact filters on multiple pages. An alternate solution would be to put
both visuals on the same page and dynamically show or hide them based on a user
selection of "chart" or "table." Let's look at how this scenario could be implemented:

1. On the View ribbon, click the Selection option in the Show Panes section.
The Selection pane appears adjacent to the Bookmarks pane.

2. Navigate to the Summary page and create a duplicate of the Stacked column
chart. This can be done by selecting the chart and pressing Ctrl + C then Ctrl
+ V or using the Copy and Paste buttons on the Home ribbon.

3. With the duplicate visual selected, change it to a Table visual. Move it so
that it lies directly on top of the Column chart. Initially, it will look a little
chaotic. You will see that this new visual is showing up in the Selection
pane. In my example, it is called Table:

Figure 6.11: Table and bar chart displayed on top of each other

4. Just to the right of this object, inside of the Selection pane, you will see an
eye icon.

Chapter 6

[213]

5. Click the eye icon. You will see that the table visual disappears from the
canvas—it is still part of the Report page but has been hidden.

6. Add a new bookmark and rename it Chart View. Also, for this new Chart
View bookmark, ensure that the Data option is not selected. The goal is to
bookmark only the visual selection, not the data selection:

Figure 6.12: Chart View bookmark with data selection settings removed from the bookmark

Digital Storytelling with Power BI

[214]

Using the knowledge from the example you just completed, create one final
bookmark that shows the table but hides the Stacked column chart. Call this
bookmark Table View and be sure to remove the data selection from the
bookmark options:

Figure 6.13: Table View bookmark settings

You can now see two different ways of displaying the same data within the same
Report page, making efficient use of the available space. With the current report
configuration, users need to open the Bookmarks pane to move between the Table
View and Chart View bookmarks. While this is functional, it is not user friendly.
Adding a button to the report that automatically selects the appropriate bookmark
is a great way to make the bookmark experience more approachable.

Using buttons to select bookmarks
Buttons can provide users with an even easier method for switching between the
table and column bookmarks. To add buttons to your report, take the following
steps:

Chapter 6

[215]

1. While on the Summary page of the report, navigate to the Insert ribbon
and click the Image button in the Elements section. This will launch a file
browser to select an image file.

2. Navigate to the directory Power-BI-Start-Guide-Second-Edition-main\
Data Sources and select the Chart.png image to add it to the canvas. In the
Format section of the Visualizations pane, turn the Title property On, name
the image Chart Button, then turn the Title property Off. This will help
distinguish between the buttons in the Selection pane but not display the
title on the image in the report:

Figure 6.14: Title disabled on the Chart Button

3. Repeat this process to add Table.png and change the title to Table Button.

To the best of your ability, stack the images on top of each other. You may need to
reduce the size of other visualizations to allow space for the images.

Now it's time to turn these images into buttons the user can press to toggle between
the Chart View and Table View bookmarks. This requires a couple of quick updates
to the Chart View and Table View bookmarks.

Begin by selecting the Chart View bookmark and then hiding the Table Button
image in the Selection pane. Select the ellipsis for the Chart View bookmark
and choose the Update option. Now make the same change on the Table View
bookmark, selecting the Table View bookmark, hiding the Chart Button image,
and choosing the Update option from the bookmark's ellipsis.

The last piece that will tie all this together is to assign an action to the appropriate
image within the bookmarks. An action will allow users to click on the Chart Button
image, visible on the Chart View bookmark, and taken to the Table View bookmark,
giving the appearance of a toggle switch. Similarly, the Table Button image, visible
on the Table View bookmark, will take the user to the Chart View bookmark again,
giving the appearance of toggling to the other view.

Digital Storytelling with Power BI

[216]

While the Table View bookmark is selected, highlight the Table Button image in the
Selection pane. The Visualizations pane will change to Format Image. Locate and
expand the Action properties. Change the toggle to On, select Bookmark from the
Type dropdown, and select Chart View from the Bookmark dropdown, as shown
in Figure 6.15:

Figure 6.15: Turning an image into a button by creating an action that navigates to the Chart View bookmark

Now, when a user clicks on the Table Button image they will be taken to the Chart
View bookmark, making a static image feel like an interactive button. In order
to experience this behavior while developing the report, just hold the Ctrl key on
the keyboard and left-click the image, and you will be taken to the Chart View
bookmark. When the report is deployed to the Power BI service, users will not need
to hold Ctrl while clicking the button to interact with it. They will simply left-click
the image.

Chapter 6

[217]

To finish this example, make the same changes to the Chart View bookmark and set
the Chart Button image to have an Action that will navigate back to the Table View
bookmark. Hopefully, with these examples you can start to see the depth of what can
be achieved by using the Selection and Bookmarks panes for digital storytelling.

Guiding report consumers through visualizations is helpful, but sometimes
switching to a different report page with a completely different view of the data
removes the user from their workflow. In cases where more detail is required, but
you would like to keep users in their workflow, you can enhance the built-in tooltips
by displaying a report page as a tooltip.

Report pages as tooltips
Tooltips are an incredibly useful feature that allows a user to see precise information
about a piece of a visual while moving the mouse around the Report canvas. While
the formatting options discussed in the previous chapter can display value labels on
a visual, sometimes that can cause a report to become too cluttered or a visual may
just be too small to display a label. Tooltips solve this problem by allowing a user to
see the label information for only the slide of data they care about. But what if those
tooltips could display even more information and provide even greater insight?
Thankfully, Power BI comes through on this front by allowing you to specify a
report page as a tooltip for a visual.

Power BI includes a few different important options for tooltip visuals. First, to use
a visual for a tooltip, you must create a report page and set the property for Tooltip
to On, which is found in the Format section, then Page Information settings. Next,
any page can be a tooltip, but report pages are large and are often too big to be an
effective tooltip. Instead, consider changing the Page size | Type property (also in
the Format section) to Tooltip. This will make the canvas a small, more manageable
tooltip. Next, locate and select the visual on which you would like to use the visual
tooltip. In the Format section, there is a section for Tooltip settings, including a
Type, which can be set to Report Page for custom tooltip visuals. You can then
set the Page to display as the tooltip or allow Power BI to intelligently choose the
appropriate page (if multiple pages are defined as tooltips) by leaving the setting
on Auto. Finally, don't forget about the filter context for the tooltip by leveraging
the tooltip filters, which will replace the drill through filters on the Visualizations
pane when a page's Tooltip setting is changed to On.

Digital Storytelling with Power BI

[218]

Let's continue using the Summary page and build a visual tooltip to see how this
functionality works:

1. Add a new page to the report and name the page Tooltip. Right-click on the
page name and select Hide page since users will not be navigating to this
page directly.

2. From the Visualizations pane, change to the Format section. Expand the
Page information properties and change the Tooltip toggle setting to On.
Expand the Page size properties and change the Type to Tooltip:

Figure 6.16: Format options to turn the report page into a tooltip and change the size
to tooltip dimensions

Chapter 6

[219]

3. By default, Power BI will scale the canvas to fit the screen. When we change
the Page size to Tooltip it may not look like the canvas is much smaller
because of the scaling. To see the actual, reduced size of the canvas, navigate
to the View ribbon, then locate the Page view option in the Scale to fit
section and change to Actual size.

4. On the top half of the canvas, create a Card visual using Profit from the
Internet Sales table.

5. On the bottom half of the canvas, create a Pie chart visual using Temperature
Range from the Temperature table as the Legend and Profit from the
Internet Sales table as the Values.

6. To make the visual filter based on location, click anywhere on the blank
canvas to deselect any visuals, and add EnglishCountryRegionName to the
tooltip fields bucket on the Visualizations pane:

Figure 6.17: Enabling the tooltip page as an option any time the EnglishCountryRegionName
field is used in a visualization

Digital Storytelling with Power BI

[220]

7. Next, return to the Summary page of the report. Select the Stacked column
chart. In the Visualizations pane, navigate to the Format section. Locate the
Tooltip properties and select Report page for the Type property and Tooltip
for the Page property. Now, when hovering the mouse over a column in the
chart, the visual tooltip we just created should appear and the country will
be passed in as a filter to the tooltip:

Figure 6.18: Setting the tooltip on a visualization to a report page

Many of the settings on a tooltip can be changed to provide more relevant
information to users, but visual tooltips offer a powerful way to extend the tooltip
functionality. By creating small pages of visuals and leveraging filters, you can
provide a vast amount of additional data and insight that just cannot be matched
by the default tooltips.

Summary
Being able to use the features discussed in this chapter effectively will turn
interactive reports into dynamic digital storytelling tools. Report developers have
a wide variety of tools at their disposal to tell exciting stories from using space
more efficiently by creating toggles, empowering users to drill through to gain
detail level insights, adding value by enhancing the built-in tooltips, or calling out
important views with bookmarks. In the next chapter, you will see how to take this
completed Power BI report and share it with others.

[221]

7
Using a Cloud Deployment
with the Power BI Service

You've spent the course of this book creating amazing reports using the Power BI
Desktop client. Now, it's time to share those reports with your team, company, or
customers. In this chapter, you're going to learn about the Power BI service and how
to use it for the following:

• Deploying reports to the Power BI service
• Creating and interacting with dashboards
• Sharing your dashboards
• Setting up row-level security
• Scheduling data refreshes

The Power BI service operates a freemium model. You can get most of the features
in the free model, but when you want to share data with others and use team
development, it will need to be upgraded to the Pro edition. Other features requiring
the Pro edition are the ability to store larger datasets and refreshing more frequently,
to name a couple.

Before you begin this chapter, make sure you sign up for a free
account at Power BI (https://powerbi.microsoft.com/
en-us/get-started/). Some sections of this book will require
a Pro license, such as the section dealing with workspaces.

https://powerbi.microsoft.com/en-us/get-started/
https://powerbi.microsoft.com/en-us/get-started/

Using a Cloud Deployment with the Power BI Service

[222]

Now, let's get started and begin exploring how to deploy reports to the Power BI
service.

Deploying reports to the Power BI
service
There are numerous ways to publish a report to the PowerBI.com service, but the
easiest way is by using Power BI Desktop. To do this, you'll need to simply open
the report you want to deploy to the Power BI service, then click the Publish button
in the desktop application, as shown in the following screenshot. If you have not
previously signed in with your free PowerBI.com account, you will be prompted
to create one or sign in with an existing account:

Figure 7.1: Power BI Sign in window

You'll then be asked which workspace you want to deploy to. A workspace is an
area in the Power BI service much like a folder, where you can bundle your reports,
datasets, and dashboards. You can also assign security to the workspace and not
have to worry about securing each item individually.

http://PowerBI.com
http://PowerBI.com

Chapter 7

[223]

Most importantly, it allows for team development of a Power BI solution, where you
can have multiple authors on a solution. We'll cover much more about workspaces in
the Sharing your dashboards section of this chapter.

At this point, select the My Workspace item, which will send the report and its data
to your personal workspace. The report will then deploy to the Power BI service. The
amount of time this takes will depend on how large your dataset is. You'll then be
presented with two options: Open the Report or Get Quick Insights.

Quick Insights is an amazing feature in Power BI that will try to find additional
interesting insights about your data that you may not have noticed initially. For
example, in the following screenshot of the sample report, the feature found that
Contoso dominated all other manufacturers in the Adventure Works dataset. You'll
notice that it not only provides a graphic of the data, but also a narrative to the right
of the graphic. If you find any of the insights especially interesting, you can click
the pushpin at the top right of the graphic to save it into a dashboard. We'll cover
dashboards in the next section of this chapter:

Figure 7.2: Quick Insights results in the Power BI service

Using a Cloud Deployment with the Power BI Service

[224]

If you open the report, PowerBI.com will launch in any web browser and show
you the same report that you were viewing on the desktop. You'll also be able
to immediately see the report in the Power BI mobile app from your Android
or iPhone. PowerBI.com has five key areas that you can interact with:

• Dashboards: You can pin the best elements from multiple reports into
a unified set of dashboards. These dashboards are the first thing most of
your casual users will interact with.

• Reports: This area refers to the projects that you have built in Power BI
Desktop or in the service. These reports can be explored, modified, or
downloaded in this section.

• Workbooks: You can upload Excel workbooks into this area. These Excel
workbooks can be used as datasets or can form pieces of the workbook that
can be pinned to a dashboard.

• Datasets: This is the raw data that you have built in Power BI Desktop. When
you click a given dataset, you can build new reports from it. You can also
build a new dataset by clicking Get data in the bottom-left corner of your
browser.

• Dataflows: This new feature in Power BI offers online self-service Extract,
Transform, Load (ETL) and data preparation. This allows organizations
to unify data from various sources, prepare the data for consumption, and
ultimately publish it as a shared, central data source for users to view in
Power BI.

http://PowerBI.com
http://PowerBI.com

Chapter 7

[225]

Figure 7.3: Exploring a workspace in the Power BI service

Using a Cloud Deployment with the Power BI Service

[226]

Now, let's explore the underlying features of the reports in the Power BI service, as
well as the other main features.

Datasets
The Datasets area of Power BI holds the raw data that makes up your reports. When
you left-click on one of your datasets, the designer opens to build reports from the
dataset. The designer can be used to perform the following actions:

• Create more quick insights
• Create new reports
• Refresh or schedule refreshes
• Manage permissions
• Download as a Power BI Desktop file (.pbix)

When you start with a dataset, users can create new reports from your data if they
have the right permissions, even when accessing it through the web. The entire
user interface will feel nearly identical to Power BI Desktop, but you will be lacking
the ability to modify the model, query, and relationships, as well as lacking the
ability to create measures or calculated columns. The best part of building reports
using the online Power BI framework is that you have a central dataset that your
organization's central IT team can own, modify, and make human-readable for use
by the entire organization.

Workbooks
The Workbooks section gives you the ability to upload Excel workbooks, which
can be used as datasets for a report or to pin selected parts of that workbook to a
dashboard. Workbooks can be updated by either reuploading the workbook, using
the database management gateway, or using OneDrive. OneDrive is Microsoft's
cloud-hosted hard drive system. With OneDrive, you can simply share or save your
Excel workbooks, and if you're using a workbook in a Power BI report, it can also
refresh manually or on a schedule.

Now we're explored some of the fundamental elements of Power BI's online service,
let's use it to create and interact with our own projects.

Chapter 7

[227]

Creating and interacting with dashboards
Once you have deployed your datasets and are using them in reports, you're ready to
bring together the many elements into a single dashboard. Often, your management
team is going to want a unified executive dashboard that combines elements such as
sales numbers, bank balances, customer satisfaction scores, and more into a single
dashboard. The amazing thing about dashboards in Power BI is that data can be
actionable and reacted to quickly. You can strategically display the most important
information your viewers need to see from multiple reports and pages. For a deeper
dive, you can click on any dashboard element and be immediately taken to the report
that is the source for that information. You can also subscribe to the dashboard and
create mobile alerts when certain numbers on the dashboard reach a milestone.

Now, let's jump in and apply this knowledge.

Creating your first dashboard
To create your first dashboard, start by opening a report that has some interesting
data. On each of the charts, tiles, and other elements, you'll see a pin icon in the top
right of that object. After you click on the pin, it will ask you which dashboard you
wish to pin that report element to. You can, at that point, create a New dashboard
or choose an Existing dashboard to add the element to, as shown in the following
screenshot. This is what makes Power BI so magical—you're able to append data
from your accounting department next to data from your sales and customer service
teams, giving your executives one place to look:

Figure 7.4: Pin a visual to a dashboard

Using a Cloud Deployment with the Power BI Service

[228]

If you have an existing dashboard, then select Existing dashboard and choose which
one you want to use. If you don't have a dashboard yet, select New dashboard,
give it a name, and then click Pin. Once you pin the first item to the dashboard,
you'll be prompted with a link to the dashboard. The newly created dashboard will
allow you to resize elements and add additional tiles of information. You can click
Add tile in the upper-right corner to add additional interesting data, such as web
content, images (such as logos), text data, and videos to the dashboard. Many people
use this in the line-manager dashboard to insert a company logo and a short video
from the executive team talking about the initiative of the quarter that relates to the
dashboard.

Figure 7.5: Dashboard with several visuals in the Power BI service

You can also pin real-time data as a tile, using custom streaming data. Simply
click on the ellipsis on the top ribbon and choose Add tile. Once you click Custom
Streaming Dataset, you have the option to add a new dataset from Azure Stream
Analytics or PubNub, or a developer can use an API to push data directly into the
dashboard. Azure Stream Analytics is the most common of these live data streams.
In this mechanism, devices could stream data through Azure Event Hub, for
example, and then get aggregated with Azure Stream Analytics. Imagine the power
of a smart power grid sending thousands of records in a second to the cloud, and
then Azure Stream Analytics aggregating this to a single record every five seconds,
the status shown by a moving needle on a gauge or line graph in Power BI.

A good way to view Power BI is from a phone, either in web view or in the native
Power BI client, which is downloadable from the App Store for Android or iPhone.

Chapter 7

[229]

There are going to be some dashboard elements that you will likely want to exclude
from a phone device because the surface area is too small. By the very nature of
the device, most people sign into Power BI on their phone to get a quick look at
the numbers. For those consumers, you can create a specialized phone view of the
dashboard.

Simply click on the ellipsis in the top ribbon of the dashboard and select Mobile
View. The default phone view will contain every element from the Web View. To
remove items, hover over each report element and click the pushpin to move it to
the Unpinned Tiles section, as shown in the following screenshot. Once you're done,
you can click the phone icon (or Mobile View name, based on your resolution) and
flip it back to Web View again:

Figure 7.6: Power BI Mobile view

There are some really neat dashboard features we can explore, too. Let's return to the
dashboard and explore.

Asking your dashboard a question
Once the dashboard is complete, you're able to ask questions about your data. Right
above the dashboard data, you'll see the area where you can Ask a question about
your data. For example, you enter a request to "Show me the total stores by state," and
Power BI will typically produce a geographical response.

Using a Cloud Deployment with the Power BI Service

[230]

If you'd prefer to see your answer as a bar chart instead of a map, you can
explicitly ask for it as a graph element—for example, "Show me the total stores
by state in a bar chart."

Figure 7.7: Q&A feature in the Power BI service

If you like the answer that comes back, you can click Pin visual in the top-right
corner to pin the report item to a dashboard. You can also expand the Filters and
Visualizations on the right to be very precise with your report item. For example,
you may only want to see stores with sales above a certain level. While Power BI is
great at answering questions with filters, it sometimes needs fine-tuning. If you're
curious as to where Power BI pulled this data from, below your newly created
report, you'll see the source of the data from which the report was derived.

A great way to encourage your users to utilize this feature is to seed Power BI with
some sample questions. To do this, select the settings gearbox in the upper-right
corner of your screen. Once there, click the dataset that you wish to create sample
questions for in the Datasets tab, as shown in the following screenshot. Expand the
Featured Q&A questions section, click Add a question, and add several questions
that might interest your user:

Chapter 7

[231]

Figure 7.8: Q&A setting in the Power BI service

Creating featured questions will help your users to start to use the vocabulary of the
report. For example, your sales team may be used to calling someone a "client," but
your marketing team uses the term "customer." Featured questions will encourage
all users to refer to customers as clients. If you want to have your cake and eat
it too, you can create synonyms inside Power BI Desktop. You can do this in the
Modeling tab in Power BI Desktop when looking at your relationships. You can
also create more advanced linguistic models in Power BI Desktop by importing
linguistic models if you've developed them. This can help with questions that you
think users might ask, such as "Who is my best customer in New York" or "Show me the
worst employees by office." The linguistic model would translate what "best" and "worst"
means to the company.

Using a Cloud Deployment with the Power BI Service

[232]

One of the amazing features you can use inside of Power BI is to ask questions
through Cortana, Windows's voice-operated assistant. With Cortana integration
enabled in the Settings tab, your users will be able to ask questions in Windows
without logging into Power BI and can get quick answers right from the Start
menu. To do this, the user must have their company account (typically Office 365)
associated with Windows by going to Settings | Account in Windows. You must
also connect Office 365 to Cortana as a connected service.

We've covered developer options in the Power BI service, now let's learn optimal
ways to share with report consumers.

Subscribing to reports and dashboards
To discourage users from printing reports and dashboards, you can have them
subscribe to the reports and dashboards instead. This will email the report or
dashboard to the user when the data changes on the report, typically daily or weekly.
This can be done by selecting Subscribe in the upper ribbon. Power BI will read the
account you're signed in with and subscribe you using that email address. When
subscribing to reports, you must select the report page that you wish to be emailed
to you. With dashboards, the entire dashboard will be emailed.

You can also set up alerts from your mobile device to alert you when a critical
number changes on a report. While looking at a dashboard, you can click the alert
icon (it looks like a bell) to create an alert. This will monitor the data on the report,
and upon that number hitting a certain specified threshold based on the rule that
you set, it will send you a phone alert and, optionally, an additional email. Alerts are
great mechanisms to let you know if a given critical number, such as a profit margin,
has fallen.

Subscriptions and alerts can be managed in the Power BI settings area under the
Subscription option. You can turn off alerts and subscriptions here, as well as
editing subscriptions. By default, the frequency of subscriptions will be whenever
the data is updated, but this happens typically no more than once per day
(although this can be altered).

Alerts are only one way to notify consumers. Let's explore other ways.

Chapter 7

[233]

Sharing your dashboards
Sharing in Power BI is quite simple, but you'll want to consider what your goal is
first. If your goal is simply to share a view-only version of a report or dashboard that
users could engage with, the basic sharing mechanism can do that. Conversely, if
your goal is to allow users to also edit the report, you will want to use a workspace
and assign roles to users in the workspace settings. Lastly, if you want to logically
package reports and dashboards together, and have the ability to have fine control
over which reports can be seen by default, consider using Power BI apps.

The easiest way to share a dashboard or report is to simply click Share on the ribbon
of any report or dashboard. Simply type the email address of the user that you
want to share with and what type of access you want to give them. While you can't
allow them to edit the report or dashboard, they will be able to view and reshare the
report themselves. At any time, you can also see what assets are shared with you by
clicking Shared with Me from the left menu of the Service page. Then, you will see
a list of users that have shared items with you. You can click on this list to filter the
report lists that are shared with you.

Workspaces
Workspaces are areas where groups of users can collaborate on datasets, reports,
and dashboards. You can create a workspace if you have a Pro license of the Power
BI service. This is the main way that your BI developers will be able to co-develop
the same sets of data and reports. Typically, you'll create a workspace for each
department in your company for the teams to store their items and data.

To create one, simply expand the Workspaces section in the left navigation menu
and click Create a workspace. Name the workspace that you wish to create and
define whether members can edit the content or just view the content, as shown in
the following screenshot, Figure 7.9. You can also define whether users will be able to
see the content of what's inside the workspace without being a member. This doesn't
mean they'll be able to see the reports, but they will be able to see the metadata.
If you're running the Power BI Premium edition, you can also assign Dedicated
capacity to a given workspace to increase the amount of data storage.

Using a Cloud Deployment with the Power BI Service

[234]

This is handy for those executive reports that must always return their visuals in
a few seconds:

Figure 7.9: Creating a workspace in the Power BI service

Chapter 7

[235]

Setting up a workspace, its roles, and permissions covers the most basic access and
security issues by defining who can access the report and other objects. Now let's
dive into further access and security options.

Setting up row-level security
In most organizations, security is not just a report-level decision. Organizations
want more granular decisions, such as whether a sales executive can only see his or
her own data. Another example is the ability for a teacher to see their own students,
the school's principal to see all the teachers at their school, and the school board
members to see all of the school's data. This level of granularity is quite possible in
Power BI, but will require some thought ahead of time on how to lay out the data.

To show an example of this, we'll need to go back to the Power BI Desktop and
open Chapter 5 - Visualizing Data.pbix from a previous chapter's example; this
file can be downloaded from this book's GitHub repository at https://github.com/
PacktPublishing/Microsoft-Power-BI-Start-Guide-Second-Edition/blob/main/
Completed%20Examples/Chapter%205%20-%20Visualizing%20Data.pbix. The goal of
this example is to ensure that United States sales managers can only see US sales,
and likewise for Australian sales managers and Australian sales. We'll only use two
countries in our example, but the same example can apply to the entire world, and
can be expanded to be made more dynamic.

To create this type of automated filter based on your user credentials, you'll need
to use DAX language snippets. Open the Power BI Desktop and click Manage roles
from the Modeling ribbon in the report. Then, click Create to make a new role called
US. Then, select Sales Territory as your table to filter on and click Add filter… |
[Sales Territory Country], as shown in the following screenshot, Figure 7.10. This
will create a stub of code in the Table filter DAX expression box that shows [Sales
Territory Country] = Value. Simply replace Value with Australia, and your first
role is created when you Save.

At any time, you can change the permissions or add users by
editing the workspace if you have permission to do so. To do this,
select the ellipsis button next to the workspace name on the main
Workspace menu and click Edit this Workspace.

https://github.com/PacktPublishing/Microsoft-Power-BI-Start-Guide-Second-Edition/blob/main/Completed
https://github.com/PacktPublishing/Microsoft-Power-BI-Start-Guide-Second-Edition/blob/main/Completed
https://github.com/PacktPublishing/Microsoft-Power-BI-Start-Guide-Second-Edition/blob/main/Completed

Using a Cloud Deployment with the Power BI Service

[236]

Do the same for US to complete the example:

Figure 7.10: Setting up row-level security

Now that we've created the two rules, let's test them out. The Power BI desktop will
not automatically filter the data for you, since you have access to the underlying data
anyway, but it can be used to test it. Click View as roles from the Modeling tab and
select the role you wish to test. You'll notice after you click on Australia, for example,
that every report element on each report page filters at that point to only show
Australian data. Power BI Desktop also warns you that you're filtering the data, and
that you can click Stop viewing to stop viewing as the role. Once you're ready to
see what you've done on the Power BI service, publish the report to your Power BI
account and open the report there.

Navigate to the dataset matching your report and select Security. You can then select
each role and type the email address of each member of that role. Click Add and
then Save to start using the role, as shown in the following screenshot, Figure 7.11.
You can also add Azure Active Directory Security Groups (such as your Australian
Employee group) to this role if you have one created already in Azure Active
Directory. After clicking Save, members of that role will only see their own data
in dashboards, reports, and any new reports that they build from the dataset:

Chapter 7

[237]

Figure 7.11: Assigning row-level security in the Power BI Service

If your user has edit rights to the workspace or dataset, then these roles will not
work since they already have the ability to see the underlying data. However, roles
do work if the user is connecting to Power BI Desktop to see the data through Excel.
Make sure the members of the workspace only have view rights selected if this
feature is important to you. Additionally, as of the time of writing, when row-level
security is turned on, Q&A will no longer work. Now, let's learn about another
important facet of reporting: scheduling refreshes.

Scheduling data refreshes
Once you have a report that everyone depends on, you're not going to want to
refresh it manually each day. The Power BI service has the ability to refresh your
datasets up to every half an hour – at the top and bottom of each hour – up to eight
times a day for the Power BI Pro edition when you're not doing real-time analysis.
If all of your data lives in the cloud, refreshing is very simple. However, if you have
some data or files on-premises, you must install the on-premises gateway.

Using a Cloud Deployment with the Power BI Service

[238]

The on-premises gateways can be used across multiple cloud services, such as
Power BI, PowerApps, Logic Apps, and Power Automate. You can download the
free gateway from the top-right download icon on PowerBI.com once you're signed
in. The first question that will be asked during the installation is whether you want
to install the data gateway in personal mode or on-premises standard mode:

Figure 7.12: Download options for Power BI data gateway

The largest difference between the on-premises data gateway and the on-premises
data gateway in personal mode is that personal mode runs as a local application
compared to a Windows service in on-premises mode. By installing in personal
mode, you risk your data becoming stale if the application is not open when your PC
starts, because the data is not available for refresh while the local machine is off. It
is handy for those users who may not have admin access to their machine, or users
who want easier data refreshes. It is recommended for ease of management and
reliability that most users install the on-premises data gateway.

Don't forget that if you want to see data in real time, you have the
option to perform a direct query, where clicks run queries against
your source system. Doing this will slow your reports down by
large factors. You can also do real-time analysis of your data by
using Azure services, such as Stream Analytics, where elements
in your dashboards refresh every second.

http://PowerBI.com

Chapter 7

[239]

After installation, you'll need to provide your Power BI login credentials. Next, you'll
need to name your gateway and provide a Recovery key, as shown in the following
screenshot, Figure 7.12. The recovery key is used to encrypt your connection strings
and your configuration. Make sure that this key is kept in a safe place and is backed
up. If you wish to make this gateway highly available, you can select Add to an
existing gateway cluster, allowing multiple machines to act as a single gateway
to Power BI:

Figure 7.13: Configuring the data gateway

Using a Cloud Deployment with the Power BI Service

[240]

With the on-premises work now complete, you will need to complete the
configuration on PowerBI.com. Click the settings gearbox from the top-right corner
and select Manage Gateways. At that point, you should see the gateways on the left.
You can add more administrators (who have permission to configure data sources
that can use this connection) in the Administrators tab. Most importantly, you will
want to test the gateway before proceeding.

Now, we need to create a connection to each of your files or databases used in your
report that are on-premises. Click the New data source button from the top-left
corner. Give the data source a name that will enable you to easily identify it later.
Typically, that name should match the filename or database name to help with
debugging later. For Excel files or any other type of files used in your report, select
File from the Data Source Type drop-down box. Then, type the Full path for the
filename or a network path (UNC path). Lastly, give the Windows credentials that
are needed to access the file on the share or folder. Once you've selected Add, click
Test all connections again to ensure you have a proper connection, as shown in the
following screenshot:

Figure 7.14: Add and test your new connection

http://PowerBI.com

Chapter 7

[241]

The Users tab also allows you to have more refined control of who can access this
data source. Once you've saved those settings, you're ready to schedule the refresh.
If you wish to just refresh the data immediately, select the ellipsis button next to the
dataset and select Refresh Now. To schedule a refresh, click Schedule Refresh. This
will take you to the dataset configuration screen. Expand the Gateway Connection
section, select Use an On-Prem Data Gateway, and click Apply. You should see your
gateway name in this section, with a status reading Online. If you don't see Online,
check whether there are any proxy settings or firewall issues preventing Power BI
from seeing your machine.

Next, expand the Scheduled Refresh section in the Datasets tab and switch the Keep
Your Data Up to Date setting to On. You can then schedule the refresh to occur
as often as every half an hour. Once you test the refresh, you can see the Refresh
History in this same tab to see whether the data was successfully refreshed. You can
also get email notifications of when refreshing fails.

Summary
The Power BI service allows your users to see the same reports on a web or mobile
platform with the same type of interactivity as they experience in Power BI Desktop.
It also allows users to build reports quickly, straight from a web platform. Once your
reports are deployed to the service, you can use row-level security to see data at a
granular level, allowing a sales manager to only see their own territory, for example.
The data can also be refreshed as often as every 30 minutes. If you're using on-
premises data sources, then you can use the on-premises gateway to bring data from
on-premises to the cloud.

In the next chapter, we will learn about Power BI dataflows, one of the newest and
most powerful self-service options for Power BI users.

If your data is already in Azure or OneDrive, then the on-premises
gateway is not required. You just need to make sure the firewall
will allow you to communicate with the Power BI service.

[243]

8
Data Cleansing in the
Cloud with Dataflows

Power BI dataflows are a new self-service extract, transform, load (ETL) option in
the Power BI service that allows you to use Power Query Editor online and leverage
your transformational work in a reusable format, both individually and with other
people. Dataflows help organizations unify data from disparate sources and prepare
it for modeling. They provide the familiarity of the Power Query Editor experience
using a GUI with M code in the background so that you can create reusable, scalable,
and extensible data source solutions for your organization. Analysts can easily
create dataflows using familiar self-service tools. Dataflows are used to ingest,
transform, integrate, and enrich big data by defining data source connections, ETL
logic, refresh schedules, and more. Power BI dataflows operate with a new model-
driven calculation engine based on Microsoft's Common Data Model in the backend.
Power BI dataflows make the process of data preparation more manageable, more
deterministic, and less cumbersome for data analysts and report creators alike. In
simplistic terms, Power BI dataflows allow analysts and report creators to create
a self-service data mart solution with a few clicks.

In this chapter, we will get you started on your Power BI dataflow journey, covering
the following topics on the way:

• Getting started with dataflows
• Creating a dataflow
• Using dataflows as a data source in the desktop

Data Cleansing in the Cloud with Dataflows

[244]

Let's start by covering the basics to build a strong foundation of knowledge that you
can build on in your projects!

Getting started with dataflows
Power BI dataflows can be simple or complex depending on your needs—and
licensing. Licensing and workspace capacity are key factors in how you can leverage
Power BI dataflows. The following table displays a comparison of some of the core
features of Power BI Pro and Power BI Premium.

Dataflow capability Power BI Pro Power BI Premium

Scheduled refresh 8 per day 48
Total storage 10 GB/user 100 TB/node
Dataflow authoring with Power Query Online +Yes Yes
Dataflow management within Power BI Yes Yes
Dataflows data connector in Power BI Desktop Yes Yes
Integration with Azure Yes Yes
Computed entities (in-storage transformations via M) No Yes
New connectors Yes Yes
Dataflow incremental refresh No Yes
Running on Power BI Premium capacity / Parallel
execution of transforms No Yes

Dataflow linked entities No Yes
Standardized schema / Built-in support for the
Common Data Model Yes Yes

For the sake of simplicity, we are giving the basic features with the Power BI Pro
license; however, it may be worth a deeper dive into Microsoft's documentation to
truly uncover all the dataflow features and administrative requirements needed to
use all the Power BI Premium features (find out more at https://docs.microsoft.
com/en-us/power-bi/transform-model/dataflows/dataflows-introduction-self-
service).

Now, let's get started with creating a practical, reusable dataflow.

https://docs.microsoft.com/en-us/power-bi/transform-model/dataflows/dataflows-introduction-self-serv
https://docs.microsoft.com/en-us/power-bi/transform-model/dataflows/dataflows-introduction-self-serv
https://docs.microsoft.com/en-us/power-bi/transform-model/dataflows/dataflows-introduction-self-serv

Chapter 8

[245]

Creating a dataflow
A very common reason to use dataflows is the reusability of the data among team
members. Consistency and having a single source of truth is the main goal for many
analysts, and a great application of this is a Date table. For this exercise, a Pro license
with no additional premium capacity is necessary. In this section, we will explore
the Power BI service to see where dataflows are created and then use simple code to
produce a dataflow that will work in many different data models.

Dataflows are created and managed in-app workspaces in Power BI, but the data
you bring into a Power BI dataflow is stored as entities—basically flat tables—in
the Common Data Model folders in Azure Data Lake Storage Gen2. These files are
stored as CSVs with JSON files containing all the metadata and rules, which unify
and standardize your self-service data warehouse. Once created, these dataflows
then serve as a data source for Power BI reports, and can also be used with other
Azure data services if you bring your own data lake.

In order to create a Power BI dataflow, you need a new workspace experience. This
has been the default for some time now—you cannot use Power BI dataflows in
much older workspaces. When creating the workspace, there are advanced options
to set up dedicated dataflow storage capacity—in other words, to connect your own
data lake for additional storage capacity and options within the Azure ecosystem.
Be sure to read the extensive admin documentation if your goal is to use your own
data lake as the backend storage, rather than leveraging the default experience. One
key point is that you will want to ensure your capacity is set to the same region as
your other Azure resources. Using My Workspace will never work, regardless of the
region and capacity, because My Workspace is a personal folder that's not designed for
sharing data organizationally.

First, create a new workspace in your version of Power BI. A key detail is that the
creator of the dataflow is automatically the owner. Previously, ownership could not
be transferred, but now there is an option to pass dataflow ownership to another
Power BI user. However, please note that creating a dataflow makes you the owner
of the dataflow by default. The dataflow owner is the primary admin for dataflow
functionality and permissions.

Data Cleansing in the Cloud with Dataflows

[246]

Once the workspace is created (we've created one here called Dataflow Test), there
is an option to Get data in the bottom-left corner of the pane that can be selected, as
shown in Figure 8.1:

Figure 8.1: Use Get data in the Power BI service to locate the dataflow options

When this button is selected, various options appear. Choose Dataflows, as shown in
Figure 8.2, to get started:

Chapter 8

[247]

Figure 8.2: Get started creating your dataflow

After selecting Get started, more options appear:

Figure 8.3: Dataflow options

Data Cleansing in the Cloud with Dataflows

[248]

It's worth describing the various options:

• Define new entities: Entities may be thought of as tables. In cases where
entities are made from scratch, they are called Computed entities. Computed
entities may be custom, or they can map to the Common Data Model
standards.

• Link entities from other dataflows: Linked entities are basically tables that
have branched off from existing computed entities in the same or different
workspaces. They are branches that allow transformation, but one key
point is that they do not store data. Linked entities point to other entities.
Accordingly, if linked entities exist in the same workspace as the original
entities, refreshes may be coordinated between them. However, different
workspaces lead to different refresh schedules.

• Import Model: Import an existing dataflow from its locally stored JSON file.
• Attach a Common Data Model folder (preview): This is the "bring your own

data lake" option.

For the Date table dataflow, there is no need for an enterprise Power BI gateway,
because it is a Blank query option and the M code will create the table in the Power
Query Editor's native language. In almost all other cases, an Enterprise data gateway
is needed, which means a Pro license is also needed. Power BI dataflows do not work
in My Workspace or with a free license.

When defining the new entity, choosing the data source is the first step. For the
M code scripted date table, selecting Blank query, one of the options towards the
bottom, is key.

Chapter 8

[249]

Figure 8.4: Choose the Blank query option to create this dataflow

At that point, copy the following script, which lets you create a date table, into the
Power Query Editor:

You can also go to https://devinknightsql.com/2015/06/16/
creating-a-date-dimension-with-power-query/ to access this
code.

https://devinknightsql.com/2015/06/16/creating-a-date-dimension-with-power-query/
https://devinknightsql.com/2015/06/16/creating-a-date-dimension-with-power-query/

Data Cleansing in the Cloud with Dataflows

[250]

//Create Date Dimension
(StartDate as date, EndDate as date)=>

let
 //Capture the date range from the parameters
 StartDate = #date(Date.Year(StartDate), Date.Month(StartDate),
 Date.Day(StartDate)),
 EndDate = #date(Date.Year(EndDate), Date.Month(EndDate),
 Date.Day(EndDate)),

 //Get the number of dates that will be required for the table
 GetDateCount = Duration.Days(EndDate - StartDate),

 //Take the count of dates and turn it into a list of dates
 GetDateList = List.Dates(StartDate, GetDateCount,
 #duration(1,0,0,0)),

 //Convert the list into a table
 DateListToTable = Table.FromList(GetDateList,
 Splitter.SplitByNothing(), {"Date"}, null, ExtraValues.Error),

 //Create various date attributes from the date column
 //Add Year Column
 YearNumber = Table.AddColumn(DateListToTable, "Year",
 each Date.Year([Date])),

 //Add Quarter Column
 QuarterNumber = Table.AddColumn(YearNumber , "Quarter",
 each "Q" & Number.ToText(Date.QuarterOfYear([Date]))),

 //Add Week Number Column
 WeekNumber= Table.AddColumn(QuarterNumber , "Week Number",
 each Date.WeekOfYear([Date])),

Chapter 8

[251]

 //Add Month Number Column
 MonthNumber = Table.AddColumn(WeekNumber, "Month Number",
 each Date.Month([Date])),

 //Add Month Name Column
 MonthName = Table.AddColumn(MonthNumber , "Month",
 each Date.ToText([Date],"MMMM")),

 //Add Day of Week Column
 DayOfWeek = Table.AddColumn(MonthName , "Day of Week",
 each Date.ToText([Date],"dddd"))

in

 DayOfWeek

For other data sources, selecting the On-premises data gateway is essential. After
pasting, click Next:

Figure 8.5: Paste the M code and select Next

Data Cleansing in the Cloud with Dataflows

[252]

Clicking Next will take us to a screen where date parameters may be specified to
determine the length of the table. Take the following steps:

1. Input a date range.
2. Name the query.
3. Select Invoke to create the date table:

Figure 8.6: Set the data range and name the table

Once the date table is created as an entity, the data type can be set using the little
icon in the top-left corner of the columns, as shown in Figure 8.7. The layout and
options of the online Power Query Editor should generally mirror the Power Query
Editor in Power BI Desktop:

Chapter 8

[253]

Figure 8.7: Set the data type on the column in the online Power Query Editor

The graphical user interface (GUI) is being updated regularly to make the dataflow
experience more and more like the Power BI Desktop experience. It is worth taking
time to look at the top ribbon with its Home, Transform, Add column, and View
options to explore the GUI because many options are similar, and some are new,
such as Map to entity and AI insights, as shown in Figure 8.8.

Data Cleansing in the Cloud with Dataflows

[254]

AI insights is fully leveraged under a Premium license and provides out-of-the-box
artificial intelligence options to analyze your data with things such as sentiment
analysis, key phrase extraction, language detection, and image tagging:

Figure 8.8: New options available for dataflows in Power BI Desktop that are not in the Power Query Editor

Here is the dialog box for the Map to entity option, which allows users to take the
existing fields in the entities and map them to common data model attributes. Users
can choose from a list of common tables (entities) and leverage that metadata if
they want:

Figure 8.9: New option to map dataflows to the Common Data Model structure

Map to entity does not apply to this date table, but it can be a useful option for other
tables, such as sales or accounting tables, where the data types and tables are often
very similar across companies, departments, and so forth.

Chapter 8

[255]

After exploring the options, it is time to save the dataflow by selecting the Save
button in the bottom-right corner. Saving will prompt you to enter a name, but
does not actually finish the saving process because data is not fully loaded into the
dataflow until after it is saved and refreshed:

Figure 8.10: Save the dataflow

A pop-up box like the one shown in Figure 8.11 will appear to load the data and
finalize the dataflow for use. Refresh now is a one-time option that manually
loads the latest data. Dataflows can leverage multiple data sources and allow the
unification of disparate sources. Under a Premium license, incremental data refreshes
can be set with Set a refresh schedule to manage the performance impact of data
sources that update at different times and rates:

Figure 8.11: Pop-up with refresh options

If you miss the pop-up option, simply find the dataflow in your workspace and click
on one of the refresh icons to set up a schedule or perform a single refresh.

Now that we've created a Power BI dataflow that will provide a consistent and
standard date table for ourselves and others, we can easily connect to this data
source from Power BI Desktop.

Data Cleansing in the Cloud with Dataflows

[256]

Using dataflows as a data source in
Power BI Desktop
Power BI dataflows act like any other imported data source. In Power BI Desktop,
simply select Get data and then connect to the Power BI Dataflows option. From
there, all the available dataflows will be available and organized. Once we click Get
data and select the dataflow option, a familiar dialog box will appear that shows
all the available dataflows we can use. As shown in Figure 8.12, your table options
appear in a list on the left-hand side. Expand the folders and choose the Date table,
then select Load to immediately use the table, or select Transform Data if you have
more work to do in the Power Query Editor:

Figure 8.12: Expand the folder options and choose the Date dataflow, then Load to use it immediately

It is important to remember that dataflows are not datasets. Datasets are semantic
models on the top of data, whereas dataflows are built on top of the dataset in a
reusable schema. Additionally, dataflows do not truly replace a data warehouse, but
they do allow for lighter self-service "data warehousing" tasks for various integration
scenarios.

Chapter 8

[257]

Summary
Congratulations on exploring an exciting new option for reusable, standardized
data that can bring great benefits to teams who need single sources of truth. In
this chapter, we created a date table dataflow using M code and learned about the
mechanics of using the Power Query Editor online.

[259]

9
On-Premises Solutions with

Power BI Report Server
Throughout this book, we've focused on building reports that will ultimately
be deployed to the web through the Power BI service or shown in the mobile
application. In this chapter, we'll show you how to deploy reports to Power BI
Report Server, which is likely being hosted on-premises at your company. For many
companies, this is a must-have, since cloud deployments are often not allowed with
their type of data or industry.

Power BI Report Server is an on-premises version of the Power BI service that gives
you a subset of the features of the full service. Unlike the full service, which is
sometimes daily updated with new features, the Power BI Service is updated every
few months. There is also an additional Power BI desktop specially made for the
server.

In this chapter, we will cover the following topics:

• Deploying to Power BI Report Server
• Securing reports
• Refreshing data

Make sure you fully explore the features of the server to ensure it
has the critical features that you love. For example, you might find
that a connector you can use in the Power BI service is not available
on the server. The biggest notable missing feature is the lack of
dashboards.

On-Premises Solutions with Power BI Report Server

[260]

Deploying to Power BI Report Server
If you're a traditional BI developer who has built Reporting Services reports, you
might feel right at home with Power BI Report Server, as the configuration and
portals were largely borrowed from Reporting Services. The main difference is that
you will not use Visual Studio to build reports. You're going to use a special Power
BI desktop that is optimized for the server. The main reason for the separate desktop
is to ensure that the desktop doesn't promote a feature that the server does not
support. One key advantage of using this approach is that Report Server can also
host your traditional Reporting Services reports, KPIs, and mobile reports.

Before deploying your report, you may want to create some folders to simplify
finding your reports later. For example, creating a folder for finance, HR, inventory,
IT, operations, and sales is a common starting point. Don't worry, you can always
move the reports later if you've already deployed them. Once you've created a
folder, if you feel it's needed, you can deploy your Power BI reports in one of two
ways: from the Power BI desktop or by uploading.

Make sure you have a Power BI Desktop instance installed that supports Power BI
Report Server and open the report that you wish to deploy. This flavor of Power BI
Desktop also supports deploying to the cloud if you need a single experience, but
note that you will be at least 3–4 months behind the main Power BI application. Next,
click File | Save As Power BI Server. If this is your first time deploying your report
to the server, everything will be blank. Simply type the Report Server HTTP address
in the box to connect to the Power BI Report Server. It should look something like
http://servername/reports. If you have a port number, you'll need to use something
like http://servername:portnumber/reports. You can find the exact location to enter
by going to your Report Server Configuration Manager tool from the server and
copying the URL from the Web Portal URL section. The port in this screenshot is
port 80, which you don't have to enter as it is the default port:

Chapter 9

[261]

Figure 9.1: Find the location using the Report Server Configuration Manager

If the desktop can successfully connect to the server, you will be prompted for the
folder name that you want to deploy to and the name of the report you want to use.
Typically, you don't want to use this opportunity to change the name of the report
since it will become difficult to find your source report later. After clicking OK, the
report will deploy and provide you with a link that will take you directly to the
report that now resides on your server. From this point forward, you can click Save
without going through this process and it will save directly to the server.

On-Premises Solutions with Power BI Report Server

[262]

You can also upload the report directly in the browser. To do this, simply go to the
folder you wish to upload the report to and click Upload in the top-right corner. You
will then be prompted for the location of the folder, and then you're done. Power BI
Report Server will scan to make sure that the report is compatible. For example, if
you built the report on a very new version of Power BI Desktop that is using features
that aren't supported in Power BI Report Server yet, then you will receive an error
before the upload occurs. Once the report is deployed, any user with the appropriate
access can also click the Edit button in Power BI Desktop to open the report up in the
desktop so that they can make changes.

If you wish to move the report to a new folder, you can go to the report listing and
click Move under the ellipsis button. You will be prompted for the folder you wish
to move the report to, and then you're done. You can also do this under Manage
under the same ellipsis.

In the Manage area of a report, you can also hide the report by clicking Hide this
Object. This can be used to hide reports that are built on other reports, for example.
It's important to note, though, that this is not a security mechanism. There's nothing
to stop a user from seeing the report if they unhide the object.

The next step we will cover is securing the report.

Securing reports
You can secure a report in the Manage screen of a report or folder. To access this
area, select a report folder or report, select the ellipsis button, and click Manage.
Then, go to the Security tab. By default, reports and folders inherit security from
their parent folder, but this can be undone quickly by clicking Customize Security.

Keep in mind that there's quite a bit of overlap in the roles that can be assigned,
mainly due to the context of what you're securing (My Reports or the public folder
of reports). The security roles that you can select are listed as follows:

• Browser: Can view the reports and folders, and subscribe to the reports.
• Content Manager: Can manage folders, reports, and resources.
• My Reports: Can publish reports and manage folders, reports, and resources

in a user's My Reports folder.
• Publisher: Can publish reports on your Power BI Report Server.
• Report Builder: Can review any definitions or metadata about the report, as

well as permissions.

Chapter 9

[263]

You can also select the gear in the top-right corner of the screen and select Site
Settings to secure the entire server. Even if you have rights to the folder or report,
you may not have rights to the server, which creates a lot of confusion with system
administrators and users trying to view their data. When you go to Site Settings,
you can add a user to one of two roles: System Administrator or System User. The
system administrator can manage the security on the server and the schedules, to
name just a couple of options. The system user grants the user rights to log in to the
server, and then requires security to view the folders and reports, as shown earlier
in this section.

Scheduling data refreshes
Refreshing data in Power BI Report Server comes with a lot more caveats than using
the Power BI cloud service. For example, refreshing is contingent on the data source
that the report is using. Since you've installed this server inside your firewall, there's
no need for a data management gateway to refresh the data either. As you create
refreshing schedules, the server will simply create SQL Server Agent jobs to control
the refreshes, such as Reporting Services. Because of this, SQL Server Agent must be
started in order to create scheduled refreshes.

If you plan on refreshing data sources that are derived from files, make sure you use
a network path for that file (\\computername\sharename\file.csv), not a local path
(such as C:\Downloads\File.csv). You can do this in Power BI Desktop by going to
the Home ribbon and selecting Edit Queries | Data Source Settings. Click Change
Source and change any file references to a network path, such as \\MyComputer\c$\
Downloads\File.csv.

Once you do that, publish the report to the server again. Then, select the report and
select Manage. For most data sources, you will need to confirm the source of the data
in the Data Sources tab. For flat files, confirm that you see the network path and type
in the credentials for the machine that's holding those files. This will need to be a
Windows Authentication username and password. Click Test Connection to confirm
that a connection can be successfully achieved. If it tests successfully, click Save.

If you find that there are popular times at which people want to
refresh data, you can create shared schedules. Shared schedules
can be found in the Site Settings administration panel (under the
gear in the top-right corner) of the portal. By creating these, you
will simplify the scheduling of future jobs for popular schedule
times.

On-Premises Solutions with Power BI Report Server

[264]

To schedule the refresh, click Scheduled Refresh in the report management area.
Then, click New Scheduled Refresh Plan to create a new schedule. You can also use
a shared schedule resource or a one-off schedule. Simply type the time you wish the
refresh to occur and the refresh interval. While there are workarounds, the lowest
grain of a scheduled refresh is typically hourly.

Test the job by selecting the job and clicking Refresh Now. If any errors occur, you
will see the error inline in the Status column. For example, the following error would
show as a Data source error: Login failed for data source 'Unknown'. This is not
nearly enough information to debug with, so click the information icon next to the
error to see a more actionable error, such as the following:

[0] -1055784932: Could not find file '\\desktop-l2qu18g\c$\OneDrive\
Documents\CountyClerksFL.csv'. The exception was raised by the
IDbCommand interface.

In many cases, doing a simple search online with the error message will lead you
to documentation, blogs, and community forums with solutions that others have
found already. In this instance, dozens of articles appear to help the user resolve the
connection issue quickly.

Summary
In this short chapter, you learned how to take Power BI service practices on-site with
Power BI Report Server. This server has many restrictions on what's available, so be
careful that you have the right version of Power BI Desktop so that it matches your
version of the server. As you've learned, the server resembles the Reporting Services
server and uses SQL Server Agent to handle data refreshes.

[265]

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Modern C++ Programming Cookbook – Second Edition

Marius Bancila

ISBN: 978-1-80020-898-8

 ● Understand the new C++20 language and library features and the problems they
solve

 ● Become skilled at using the standard support for threading and concurrency for
daily tasks

 ● Leverage the standard library and work with containers, algorithms, and
iterators

https://www.packtpub.com/product/modern-c-programming-cookbook-second-edition/9781800208988

[266]

Other Books You May Enjoy

 ● Solve text searching and replacement problems using regular expressions
 ● Work with different types of strings and learn the various aspects of compilation
 ● Take advantage of the file system library to work with files and directories
 ● Implement various useful patterns and idioms
 ● Explore the widely used testing frameworks for C++

[267]

Other Books You May Enjoy

Leave a review - let other readers know
what you think
Please share your thoughts on this book with others by leaving a review on the site that
you bought it from. If you purchased the book from Amazon, please leave us an honest
review on this book's Amazon page. This is vital so that other potential readers can see
and use your unbiased opinion to make purchasing decisions, we can understand what
our customers think about our products, and our authors can see your feedback on the
title that they have worked with Packt to create. It will only take a few minutes of your
time, but is valuable to other potential customers, our authors, and Packt. Thank you!

[269]

Index
Symbols
#shared function

using 48, 49

A
age calculation

using, in DAX 103, 104
AI Insights

leveraging 44
AI Insights, Text Analytics

using 45, 46
alternative methods, for time intelligence

reference link 120
Analytics section 194, 195
ArcGIS map visual

geographical data, visualizing with 184-186
Azure maps visual

geographical data, visualizing with 186, 187

B
bar and column charts

categorical data, visualizing with 156, 157
Base Transceiver Stations (BTSes) 86
bookmarking

alternate views, of same data 212,-214
bookmarks

object visibility, combining with 211
report views, capturing 206-211
selecting, with buttons 214-217

branch 159
bubble chart 162
bubble map 180
built-in time intelligence functions

reference link 122

buttons
used, for selecting bookmarks 214-217

C
calculated columns

building, with DAX 98-100
use cases 98

calculated measures
assignment 113
creating 109
creating, with DAX 108
folders, displaying 114-116
Profit 111
Profit Margin 112
Total Cost 111
Total Sales 110, 111

calculate function 117- 119
card data 176
cards

data, visualizing with 176, 177
categorical data 156

visualizing 155
visualizing, with bar and column

charts 156, 157
visualizing, with combo charts 166, 167
visualizing, with funnel chart 170, 171
visualizing, with line and area charts 164
visualizing, with pie and donut

charts 157-159
visualizing, with ribbon chart 167, 168
visualizing, with scatter chart 162, 164
visualizing, with treemap visual 159, 161
visualizing, with waterfall chart 169, 170
with treemap visual 160

combo charts
categorical data, visualizing with 166, 167

[270]

complex relationships
many-to-many relationships 65-67
role-playing table 71-73
working with 65

composite models 12, 13
computed entities 248
cross-filtering direction 67-69

enabling 69-71
cross-filtering visual 136-138
cross-highlighting visual 136-138

D
dashboards

creating 227
interacting with 227
question, asking to 229-231
sharing 233
subscribing to 232

data
filtering 135, 136
importing 4
visualizing, with cards 176, 177
visualizing, with multi-row card 177, 178

Data Analysis Expressions (DAX) 52
age calculation, using 103, 104
format function, using 102
navigation function, using 105-107
string functions, using 100, 101, 102
SWITCH() function, using 104, 105
used, for building calculated columns 98-100
used, for role-playing tables 122-127
using, to create calculated measures 108

dataflows
creating 245-255
reference link 244
using, as data source in Power BI

Desktop 256
working with 244

data model performance 89
best practices 94
incremental refresh, in Power BI 94
processing 93
query folding 93
query performance 89

data refreshes
scheduling 237-264

Datasets 226
data source types

Excel 4-6
SQL Server 6, 7
Web 8, 9

data visualization, tips and tricks 192
Analytics section, using 194, 195
Show Value As, using 196, 197
Top N filter, using 195
visuals, changing 192, 193
visuals, formatting 193

Datekey
Power BI relationships, creating on 61-64

date tables
automatically, disabling 64
importing 73-75

DirectQuery 9, 10
limitations 11, 12

drill through feature
configuring 200-206

E
Edit interactions 138, 140
Excel 4-6
Extract, Transform, Load (ETL) 224

F
filled map visual

geographical data, visualizing with 181-183
filter context 116, 117

calculate function 117-119
total calculation, percentage 119

first dashboard
creating 227-229

format function
using, in DAX 102

funnel chart
categorical data, visualizing with 170, 171

Fuzzy Matching 37

G
gauge visual

KPI data, visualizing with 172, 173
geographical data

visualizing 179

[271]

visualizing, with ArcGIS map visual 184-186
visualizing, with azure map visual 186, 187
visualizing, with filled map visual 181-183
visualizing, with map visual 180, 181
visualizing, with shape map visual 183, 184

graphical user interface (GUI) 253

I
incremental refresh

reference link 94

K
KPI data

visualizing 172
visualizing, with gauge visual 172, 173
visualizing, with KPI visual 174, 175

KPI visual
KPI data, visualizing with 174, 175

L
line and area charts

categorical data, visualizing with 164
linked entities 248
live connection 14

limitations 15

M
many-to-many relationships 65-67

cross-filtering direction 67- 69
cross-filtering direction, enabling 69-71

map visual 180
geographical data, visualizing with 180, 181

matrix visual
used, for visualizing tabular data 153-155

M formula language 46, 47
#shared function 48, 49

multi-row card
data, visualizing with 177, 178

N
natural language 187-190
navigation function

using, in DAX 105-107

O
object visibility

combining, with bookmarks 211
optional parameters 112

P
pie and donut charts

categorical data, visualizing with 157-159
PowerBI

role-playing table, handling 72
Power BI custom

visuals 191, 192
Power BI Desktop

dataflows, using as data source 256
download link 2
features 3

Power BI Desktop, key element
Fields pane 132
Filters pane 131
More visuals 131
Page navigation 132
Report canvas 131
Visualizations pane 131

Power BI relationships
building 52-56
characteristics 52
creating 59, 61
creating, on Datekey 61-64
date tables, automatically disabling 64
editing 56, 58, 59

Power BI Report Server
deploying 260-262
download link 2

Power BI service
reports, deploying to 222

Power Query Editor 6, 18, 19
Power Query Editor, advanced data

transformation options 25
Conditional Columns 25-27
Fill Down 28
queries, appending 38, 39
queries, merging 34-37
Unpivot 29-34

Power Query Editor, transform basics 19, 20
Add Column From Examples 23, 25
Applied Steps, features 19

[272]

Change Type 22, 23
Remove Columns 21, 22
Use First Row as Headers 20

prior year sales 121, 122

Q
query performance

aggregations, creating in Power BI 92, 93
data, importing 89
data model, design methodologies 89-92
DirectQuery 92

Quick Insights 223

R
R

configuring 40
download link 40
installing 40
leveraging 39

report pages
as tooltips 217-220

reports
deploying, to Power BI service 222-226
securing 262, 263
security roles 262
subscribing to 232

report views 131, 133
capturing, with bookmarks 206-211

ribbon chart
categorical data, visualizing with 167, 168

role-playing tables 71-73
benefits 72
cons 73
date table, importing 73-75
handling, in PowerBI 72
with DAX 122-127

row-level security
setting up 235-237

R script transform 42, 43
RStudio 42

download link 42

S
scatter chart

categorical data, visualizing with 162, 164
shape map visual

geographical data, visualizing with 183, 184
slicer visual 140
slicer visual, data types

date 146-148
numeric 144-146
string/text 140-144

Spotlight 208
SQL Server 6, 7
SQL Server Analysis Services (SSAS) 4
string functions

using, in DAX 100-102
SWITCH() function

using, in DAX 104, 105

T
table visual

used, for visualizing tabular data 149-153
tabular data

visualizing 148
visualizing, with matrix visual 153-155
visualizing, with table visual 149-153

time intelligence 119
YTD Sales 120

tooltips 217-220
Top N filter 195
total calculation

percentage 119
treemap visual

categorical data, visualizing with 159-161
trend data 164

visualizing 164

U
Unpivot 28
usability enhancements 75

column, displaying 81-83
data categorization 83, 85

[273]

default summarization, assigning 80, 81
hierarchies, creating 85-88
tables and columns, hiding 76
tables and columns, renaming 77

US Government open data
URL 8

V
visualizations

filtering 135, 136
visuals

creating 133-135
for analytics 191

W
waterfall chart

categorical data, visualizing with 169, 170
Web 8, 9
Workbooks 226
workspaces 233, 235

X
xVelocity 4

Y
YTD Sales 120, 121

	Cover
	Copyright
	Packt Page
	Contributors
	Table of Contents
	Preface
	Chapter 1: Getting Started with Importing Data Options
	Getting started
	Importing data
	Excel as a source
	SQL Server as a source
	Web as a source

	DirectQuery
	Limitations

	Composite models
	Live connection
	Limitations

	Which should I choose?
	Summary

	Chapter 2: Data Transformation Strategies
	The Power Query Editor
	Transform basics
	Use First Row as Headers
	Remove Columns
	Change Type
	Column From Examples

	Advanced data transformation options
	Conditional Columns
	Fill Down
	Unpivot
	Merge Query
	Append Query

	Leveraging R
	Installation and configuration
	The R script transform

	AI Insights
	Sentiment Analysis with Text Analytics

	The M formula language
	#shared

	Summary

	Chapter 3: Building the Data Model
	Building relationships
	Editing relationships
	Creating a new relationship
	Creating a relationship on the Datekey
	Disabling automatically created date tables

	Working with complex relationships
	Many-to-many relationships
	Cross-filtering direction
	Enabling filtering from the many side of a relationship

	Role-playing tables
	Importing the date table

	Usability enhancements
	Hiding tables and columns
	Renaming tables and columns
	Default summarization
	How to display one column but sort by another
	Data categorization
	Creating hierarchies

	Data model performance
	Query performance
	Importing data
	Data model design methodologies
	DirectQuery
	Aggregations

	Processing performance
	Query folding
	Incremental refresh
	Best practices

	Summary

	Chapter 4: Leveraging DAX
	Building calculated columns
	String functions – Month Year
	Format function – Month Year
	Age calculation
	SWITCH() – age breakdown
	Navigation functions – RELATED

	Calculated measures – the basics
	Calculated measures – basic aggregations
	Total Sales
	Total Cost
	Profit
	Profit Margin

	Assignment of calculated measures
	Display folders

	Filter context
	Calculate
	The percentage of total calculation

	Time intelligence
	YTD Sales
	YTD Sales (fiscal calendar)
	Prior Year Sales

	Role-playing tables with DAX
	Summary

	Chapter 5: Visualizing Data
	Report view basics
	Creating new visuals
	Filtering visualizations and data
	Cross-filtering and cross-highlighting
	Edit interactions
	Slicer
	String/text
	Numeric
	Date

	Visualizing tabular data
	Table
	Matrix

	Visualizing categorical data
	Bar and column charts
	Pie and donut charts
	Treemap
	Scatter chart
	Visualizing trend data
	Line and Area charts
	Combo charts
	Ribbon chart
	Waterfall chart
	Funnel chart

	Visualizing KPI data
	Gauge
	KPI

	Visualizing data using cards
	Card
	Multi-row card

	Visualizing geographical data
	Map
	Filled map
	Shape map
	ArcGIS Map
	Azure maps

	Natural language
	Visuals from analytics
	Power BI custom visuals
	Data visualization tips and tricks
	Changing visuals
	Formatting visuals
	The Analytics section
	The Top N filter
	Show value as

	Summary

	Chapter 6: Digital Storytelling with Power BI
	Configuring drill through
	Capturing report views with bookmarks
	Combining object visibility with bookmarks
	Bookmarking alternate views of the same data
	Using buttons to select bookmarks

	Report pages as tooltips
	Summary

	Chapter 7: Using a Cloud Deployment with the Power BI Service
	Deploying reports to the Power BI service
	Datasets
	Workbooks

	Creating and interacting with dashboards
	Creating your first dashboard
	Asking your dashboard a question
	Subscribing to reports and dashboards

	Sharing your dashboards
	Workspaces

	Setting up row-level security
	Scheduling data refreshes
	Summary

	Chapter 8: Data Cleansing in the Cloud with Dataflows
	Getting started with dataflows
	Creating a dataflow
	Using dataflows as a data source in Power BI Desktop
	Summary

	Chapter 9: On-Premises Solutions with Power BI Report Server
	Deploying to Power BI Report Server
	Securing reports
	Scheduling data refreshes
	Summary

	Other Books You May Enjoy
	Index

